ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (6): 526123.doi: 10.7527/S1000-6893.2022.26123
• Reviews • Previous Articles Next Articles
ZHA Jianping, WANG Fengjiao, GUO Junxian, LI Mingqiang
Received:
2021-07-16
Revised:
2022-03-14
Online:
2022-06-15
Published:
2022-03-11
Supported by:
CLC Number:
ZHA Jianping, WANG Fengjiao, GUO Junxian, LI Mingqiang. An overview of noise source control technology for helicopter main gearbox[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526123.
[1] BRENNAN M J, ELLIOTT S J, HERON K H. Noise propagation through helicopter gearbox support struts-An experimental study[J]. Journal of Vibration and Acoustics, 1998, 120(3):695-704. [2] SIMON F, HAASE T, UNRUH O, et al. Activities of European research laboratories regarding helicopter internal noise[J]. Aerospace Lab, 2014(7):1-14. [3] HOWLETT J T, CLEVENSON S A, RUPF J A, et al. Interior noise reduction in a large civil helicopter:NASA-TN-D-8477[R]. Washington, D.C.:NASA, 1977. [4] SCHEIDLER J J, ASNANI V M. A review of noise and vibration control technologies for rotorcraft transmissions[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Reston:Institute of Noise Control Engineering of the USA, 2016:2986-2997. [5] FLEMING D P. Vibration transmission through bearings with application to gearboxes:NASA-TM-214954[R]. Washington, D.C.:NASA, 2007. [6] POLLARD J S. Helicopter gear noise and its transmission to the cabin[C]//3rd European Rotorcraft and Powered Lift Aircraft Forum, 1977:52.1-52.10. [7] 许鹏. 浅析AC313直升机主减速器设计[J]. 科技创新与应用, 2014(16):30. XU P. Analysis of AC313 helicopter main gearbox design[J]. Technology Innovation and Application, 2014(16):30(in Chinese). [8] 王卫刚. 直升机传动系统设计方法研究[D]. 南京:南京航空航天大学, 2011:9. WANG W G. Research on design method of helicopter transmission system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:9(in Chinese). [9] WEDEN G J, COY J J. Summary of drive-train component technology in helicopters:NASA-TM-83726[R]. Washington, D.C.:NASA, 1984. [10] 李润方, 王建军. 齿轮系统动力学-振动、冲击、噪声[M]. 北京:科学出版社, 1996:10. LI R F, WANG J J. Dynamics of gear system:Vibration, shock and noise[M]. Beijing:Science Press, 1996:10(in Chinese). [11] MARK W D. Analysis of vibratory excitation of gear systems as a contributor to aircraft interior noise:NASA-CR-159088[R]. Washington, D.C.:NASA, 1979. [12] COY J J, HANDSCHUH R F, LEWICKI D G, et al. Identification and proposed control of helicopter transmission noise at the source:N88-16647[R]. Washington, D.C.:NASA, 1988. [13] SCHATZ R, HEGER R, KORNTHEUER P. EC145 Mercedes-Benz style with advanced interior acoustics[C]//Proceedings of ISMA 2014 including USD, 2014:4047-4062. [14] MUCCHI E, PIERRO E, VECCHIO A. Advanced vibro-acoustic techniques for noise control in helicopters[M]//SIANO D.Noise Control, Reduction and Cancellation Solutions in Engineering. Rijeka:InTech, 2012:123-146. [15] OSWALD F B, TOWNSEND D P, VALCO M J, et al. Influence of gear design on gearbox radiated noise[J]. Gear Technology, 1998, 15(1):10-15. [16] HOUSER D R, VAISHYA M, SORENSON J D. Vibro-acoustic effects of friction in gears:An experimental investigation:SAE Technical Paper 2001-01-1516[R]. Warrendale:SAE International, 2001. [17] HANSEN B, SALERNO M, WINKELMANN L. Isotropic superfinishing of S-76C+ main transmission gears:06FTM02[R]. Alexandria:AGMA, 2006. [18] SCHLEGEL R G, MARD K C. Transmission noise control approaches in helicopter design[C]//American Society of Mechanical Engineers Design Engineering Conference. New York:ASME,1967. [19] PARKER R G. A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration[J]. Journal of Sound and Vibration, 2000, 236(4):561-573. [20] STERNFELD H, SCHAIRER J, SPENCER R. An investigation of helicopter transmission noise reduction by vibration absorbers and damping:AD752579[R]. 1972. [21] 杨春苹, 王承辉. 面齿轮国内外发展状况分析[J]. 工业设计, 2016(1):139-140. YANG C P, WANG C H. Analysis of development status of face gear at home and abroad[J]. Industrial Design, 2016(1):139-140(in Chinese). [22] HEATH G F, BOSSLER R B. Advanced Rotorcraft Transmission (ART)program-final report:NASA-CR-191057[R]. Washington, D.C.:NASA, 1993. [23] 王俊, 潘文斌. 直升机传动系统面齿轮传动技术的发展[J]. 航空动力, 2018(5):44-46. WANG J, PAN W B. The development of face gear transmission technology of helicopter transmission system[J]. Aerospace Power, 2018(5):44-46(in Chinese). [24] ASNANI V, SCHEIDLER J, TALLERICO T. Magnetic gearing research at NASA[C]//American Helicopter Society International Annual Forum & Technology Display. Fairfax:American Helicopter Society, 2018:1-14. [25] SCHEIDLER J J, ASNANI V M, TALLERICO T F. NASA's magnetic gearing research for electrified aircraft propulsion[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway:IEEE Press, 2018:1-12. [26] SCHEIDLER J J, CAMERON Z A, TALLERICO T F. Dynamic testing of a high specific torque concentric magnetic gear[C]//Proceeding of the Vertical Flight Society's 75th Annual Forum, 2019. [27] TALLERICO T, CAMERON Z A, SCHEIDLER J J. Design of a magnetic gear for NASA's vertical lift quadrotor concept vehicle:AIAA-2019-4477[R]. Reston:AIAA, 2019. [28] BIRD J Z. A review of electric aircraft drivetrain motor technology[J]. IEEE Transactions on Magnetics, 2022, 58(2):1-8. [29] 董宇. 某直升机主减速器新齿形齿轮接触承载能力研究[D]. 合肥:合肥工业大学, 2016:6. DONG Y. Research of the new tooth gear in helicopter main reducer with load and contact capacity[D]. Hefei:Hefei University of Technology, 2016:6(in Chinese). [30] 陈宏尚. 基于亥姆霍兹理论的微穿孔腹板面齿轮传动降噪方法研究[D]. 南京:南京航空航天大学, 2015:65. CHEN H S. Construction of low noise face gear drives associated with micro punch web based on Helmholtz effects[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:65(in Chinese). [31] 李召, 陈卫东. 齿轮材料对直升机主减行星轮系动态响应的影响研究[J]. 安徽职业技术学院学报, 2021, 20(3):38-42. LI Z, CHEN W D. Study on the influence of gear materials on the dynamic responses of the main reducer planetary gear train of helicopter[J]. Journal of Anhui Vocational & Technical College, 2021, 20(3):38-42(in Chinese). [32] 王世宇. 基于相位调谐的直齿行星齿轮传动动力学理论与实验研究[D]. 天津:天津大学, 2005:16. WANG S Y. Theoretical and experimental investigations on dynamics of spur planetary gear transmissions based on planet phasing theory[D]. Tianjin:Tianjin University, 2005:16(in Chinese). [33] 戴麟, 朱如鹏, 鲍和云, 等. 相位调谐对行星齿轮系统辐射噪声影响的研究[J]. 振动与冲击, 2016, 35(13):51-57. DAI L, ZHU R P, BAO H Y, et al. Effects of phase adjustment on noise radiation in a planetary gear transmission system[J]. Journal of Vibration and Shock, 2016, 35(13):51-57(in Chinese). [34] 李凯岭, 孙乃坤, 崔剑平, 等. 渐开线齿轮不同形式齿廓偏差对齿轮噪声的影响[J]. 机械工程学报, 2008, 44(3):234-240. LI K L, SUN N K, CUI J P, et al. Influence on gear mesh noise from different tooth profile errors of involute gears[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3):234-240(in Chinese). [35] WANG Y Z, SU G Y. Analysis of noise characteristics of spur face gear under different installation errors[J]. IOP Conference Series:Materials Science and Engineering, 2020, 892(1):012094. [36] 姚灿. 面齿轮在直升机传动系统中的应用前景分析[J]. 直升机技术, 2020(1):67-72. YAO C. Application prospect analysis of face gear in helicopter transmission system[J]. Helicopter Technique, 2020(1):67-72(in Chinese). [37] 井立兵, 张廷, 黄章仚, 等. 磁力齿轮发展历程及可研究问题[J]. 机械传动, 2019, 43(1):165-170. JING L B, ZHANG T, HUANG Z X, et al. Development course and research question of magnetic gear[J]. Journal of Mechanical Transmission, 2019, 43(1):165-170(in Chinese). [38] 彭先龙, 郭卫. 面齿轮制造技术综述及未来发展趋势[J]. 制造技术与机床, 2017(9):36-42. PENG X L, GUO W. Research review and development trend of face gear manufacturing[J]. Manufacturing Technology & Machine Tool, 2017(9):36-42(in Chinese). [39] 李珏. 直升机主减速器新型传动机构研究[D]. 合肥:合肥工业大学, 2014:9. LI J. Research on new transmission mechanism of helicopter main reducer[D]. Hefei:Hefei University of Technology, 2014:9(in Chinese). [40] 徐锐, 黄康, 张靖, 等. 中心距偏差对微线段齿轮系统的动力学特性影响研究[J]. 机械科学与技术, 2021, 40(9):1338-1346. XU R, HUANG K, ZHANG J, et al. Influence of center distance deviation on dynamic characteristics of micro-segment gear system[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9):1338-1346(in Chinese). [41] 熊杨寿, 韩广志, 黄康, 等. 考虑时变摩擦系数的微线段齿轮系统动态特性分析[J]. 机械工程学报, 2021, 57(19):113-127. XIONG Y S, HAN G Z, HUANG K, et al. Research on the nonlinear dynamics of micro-segment gear system with time-varying friction coefficient[J]. Journal of Mechanical Engineering, 2021, 57(19):113-127(in Chinese). [42] RICHARDS D, PINES D J. Passive reduction of gear mesh vibration using a periodic drive shaft[J]. Journal of Sound and Vibration, 2003, 264(2):317-342. [43] AUTRAN P, MATERKOWSKI D, LESIEUTRE G A. Multi-layered radial isolator for helicopter interior noise reduction:AIAA-2013-1831[R]. Reston:AIAA, 2013. [44] DIMOFTE F. Wave journal bearing with compressible lubricant-Part I:The wave bearing concept and a comparison to the plain circular bearing[J]. Tribology Transactions, 1995, 38(1):153-160. [45] ENE N M, DIMOFTE F. Effect of fluid film wave bearings on attenuation of gear mesh noise and vibration[J]. Tribology International, 2012, 53:108-114. [46] ATZRODT H, MAYER D, MELZ T. Reduction of bearing vibrations with shunt damping[C]//16th International Congress on Sound and Vibration, 2009. [47] DENG Z X, ASNANI V M, DAPINO M J. Magnetostrictive vibration damper and energy harvester for rotating machinery[C]//Proceedings Volume 9433, Industrial and Commercial Applications of Smart Structures Technologies. Bellingham:SPIE, 2015:84-94. [48] ASNANI V M, DENG Z X, SCHEIDLER J J, et al. Experimental comparison of piezoelectric and magnetostrictive shunt dampers[C]//Proceedings Volume 9801, Industrial and Commercial Applications of Smart Structures Technologies. Bellingham:SPIE, 2016:184-193. [49] 宋云强, 方宗德, 陈善志, 等. 直升机一体化齿轮轴的模态分析及优化[J]. 机械设计与制造, 2008(10):152-154. SONG Y Q, FANG Z D, CHEN S Z, et al. Modal analysis and optimization of an integrative gear shaft in helicopter[J]. Machinery Design & Manufacture, 2008(10):152-154(in Chinese). [50] 高豪, 杨建军, 戴化, 等. 直升机主减机匣轴承座阻尼结构减振分析[J]. 机械传动, 2021, 45(10):100-105. GAO H, YANG J J, DAI H, et al. Vibration reduction analysis of bearing seat damping structure of helicopter main reducer casing[J]. Journal of Mechanical Transmission, 2021, 45(10):100-105(in Chinese). [51] 王锡龙. 粘弹性减振器对直升机传动轴系动力学特性的影响研究[D]. 南京:南京航空航天大学, 2012:8. WANG X L. Research on the effects of viscoelastic damper to the dynamics of helicopter drive shaft system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:8(in Chinese). [52] 宋非非. 一种新型减振环的动力学建模和仿真分析[D]. 南京:南京航空航天大学, 2017:25. SONG F F. Dynamic modeling and simulation analysis of a new type of vibration reduction ring[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:25(in Chinese). [53] 谭巍, 罗泽明, 薛庆增. 航空发动机轴承噪声检测技术分析研究[J]. 装备制造技术, 2014(5):114-116. TAN W, LUO Z M, XUE Q Z. Analysis of aero-engine bearing noise detection technology[J]. Equipment Manufacturing Technology, 2014(5):114-116(in Chinese). [54] BADGLEY R H, CHIANG T. Investigation of gearbox design modifications for reducing helicopter gearbox noise:AD742735[R]. 1972. [55] 京京. 复合材料在"科曼奇"直升机上的应用[J]. 国际航空, 1994(7):21-22. JING J. Use of composite in Comanche helicopter[J]. International Aviation, 1994(7):21-22(in Chinese). [56] HUFENBACH W, TÄGER O, DANNEMANN M, et al. Lightweight acoustic potential of helicopter main gearbox components made of composite materials[R]. 2008. [57] CAILLET J, MARROT F, UNIA Y, et al. Comprehensive approach for noise reduction in helicopter cabins[J]. Aerospace Science and Technology, 2012, 23(1):17-25. [58] 布赖恩·巴恩斯, 弗兰克·斯坦普斯. 用于改进的弹簧刚度调节的气动增强弹性减震器:CN103967996A[P]. 2014-08-06. BRIAN E B, FRANK B S. Improved spring stiffness adjustment of pneumatic reinforced elastic shock absorber:CN103967996A[P]. 2014-08-06(in Chinese). [59] 王燕, 李书, 许秋怡. 基于Hyperworks二次开发的直升机主减机匣结构振动分析与优化[C]//第26届全国振动与噪声高技术及应用会议论文选集. 南京:中国振动工程学会,2015:183-190. WANG Y, LI S, XU Q Y. Vibration analysis and optimization of helicopter main reduction casing based on Hyperworks secondary development[C]//Proceedings of the 26th National High Technology and Application Conference on Vibration and Noise. Nanjing:Chinese Society for Vibration Engineering, 2015:183-190. (in Chinese). [60] 许华超, 秦大同, 刘长钊, 等. 计入结构柔性的直升机主减速器振动特性分析[J]. 航空动力学报, 2019, 34(5):1020-1028. XU H C, QIN D T, LIU C Z, et al. Vibration characteristics analysis for helicopter main gearbox considering strutural flexibility[J]. Journal of Aerospace Power, 2019, 34(5):1020-1028(in Chinese). [61] 胡航, 康志明, 郄冬. 试论直升机主减机匣结构振动噪声分析与优化[J]. 中国战略新兴产业, 2019(8):220. HU H, KANG Z M, QIE D. Analysis and optimization of vibration and noise of helicopter main reducing casing structure[J]. Strategic Emerging Industries of China, 2019(8):220(in Chinese). [62] 许秋怡, 李书. 直升机主减速器机匣结构减振优化设计[C]//第26届全国振动与噪声高技术及应用会议论文选集. 南京:中国振动工程学会, 2015:191-196. XU Q Y, LI S. Optimization design of helicopter main reducer casing structure vibration reduction[C]//Proceedings of the 26th National High Technology and Applications Conference on Vibration and Noise. Nanjing:Chinese Society for Vibration Engineering, 2015:191-196(in Chinese). [63] 王风娇. 基于主减速器周期撑杆的直升机舱内减振降噪技术研究[D]. 南京:南京航空航天大学, 2019:95. WANG F J. Helicopter cabin vibration and noise reduction based on gearbox periodic struts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:95(in Chinese). [64] 张琳, 李书, 张韬. 直升机主减机匣结构振动噪声分析与优化[J]. 航空动力学报, 2016, 31(2):323-329. ZHANG L, LI S, ZHANG T. Analysis and optimization of helicopter main gearbox housing structural vibration and noise[J]. Journal of Aerospace Power, 2016, 31(2):323-329(in Chinese). [65] 宋玉宝, 李征初, 黄奔, 等. 周期隔振设计用于直升机舱内噪声抑制的研究[J]. 振动工程学报, 2020, 33(4):764-771. SONG Y B, LI Z C, HUANG B, et al. Reduction of helicopter cabin noise using periodic isolation design[J]. Journal of Vibration Engineering, 2020, 33(4):764-771(in Chinese). [66] 王目凯. 直升机主减速器支撑杆的隔振特性研究[D]. 哈尔滨:哈尔滨工业大学, 2015:8. WANG M K. Research on vibration isolation characteristics of the helicopter main gearbox support strut[D]. Harbin:Harbin Institute of Technology, 2015:8(in Chinese). [67] CHEN M H, BRENNAN M J. Active control of gear vibration using specially configured sensors and actuators[J]. Smart Materials and Structures, 2000, 9(3):342-350. [68] GUAN Y H, LI M F, LIM T C, et al. Comparative analysis of actuator concepts for active gear pair vibration control[J]. Journal of Sound and Vibration, 2004, 269(1-2):273-294. [69] LI Z, WANG H, ZHU R P. Effect predictions of web active control on dynamic behaviors of face gear drives[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(2):753-764. [70] PALAZZOLO A B, KASCAK A F. Piezoelectric pushers for active vibration control of rotating machinery:N88-23229[R]. Washington, D.C.:NASA, 1988. [71] MONTAGUE G T, KASCAK A F, PALAZZOLO A, et al. Feedforward control of gear mesh vibration using piezoelectric actuators[J]. Shock and Vibration, 1994, 1(5):473-484. [72] REBBECHI B, HOWARD C, HANSEN C. Active control of gearbox vibration[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Reston:Institute of Noise Control Engineering of the USA, 1999:295-304. [73] TOSO M, BAZ A, PINES D. Active vibration control of periodic rotating shafts[C]//Proceedings of ASME 2004 International Mechanical Engineering Congress and Exposition. New York:ASME, 2004:179-186. [74] ZHAO G Y, ALUJEVIC' N, DEPRAETERE B, et al. Adaptive-passive control of structure-borne noise of rotating machinery using a pair of shunted inertial actuators[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(12):1584-1599. [75] GUAN Y H, LIM T C, SHEPARD W S. Experimental study on active vibration control of a gearbox system[J]. Journal of Sound and Vibration, 2005, 282(3-5):713-733. [76] ZHAO G, ALUJEVIC' N, DEPRAETERE B, et al. Experimental study on active structural acoustic control of rotating machinery using rotating piezo-based inertial actuators[J]. Journal of Sound and Vibration, 2015, 348:15-30. [77] 李以农, 范振华, 李贵彦, 等. 基于模糊控制的齿轮传动系统振动主动控制与仿真[J]. 江苏大学学报(自然科学版), 2011, 32(3):281-286. LI Y N, FAN Z H, LI G Y, et al. Active vibration control and simulation of gear transmission system based on fuzzy algorithm[J]. Journal of Jiangsu University (Natural Science Edition), 2011, 32(3):281-286(in Chinese). [78] SUN W, LI Y N, ZHANG F, et al. Active gear pair vibration control based on filtered-X RLS algorithm[J]. Applied Mechanics and Materials, 2011, 86:166-169. [79] 张锋. 基于压电作动器的齿轮传动系统振动主动控制及算法研究[D]. 重庆:重庆大学, 2013:20. ZHANG F. Study on gear transmission system active vibration control based on piezoelectric actuator[D]. Chongqing:Chongqing University, 2013:20(in Chinese). [80] PINTE G, DEVOS S, STALLAERT B, et al. A piezo-based bearing for the active structural acoustic control of rotating machinery[J]. Journal of Sound and Vibration, 2010, 329(9):1235-1253. [81] DIMOFTE F, HENDRICKS R. Active-controlled fluid film based on wave-bearing technology:NASA/TM 2011-210987[R]. Washington, D.C.:NASA, 2011. [82] YOGARAJU R, RAVIKUMAR L, SARAVANAKUMAR G, et al. Feasibility and performance studies of a semi active journal bearing[J]. Procedia Technology, 2016, 25:1154-1161. [83] YOGARAJU R, RAVIKUMAR L, SARAVANAKUMAR G, et al. Experimental investigation on the effect of housing profile and its relative position on the performance of semi-active journal bearing[C]//Proceedings of the 6th National Symposium on Rotor Dynamics, 2021:307-316. [84] YOERKIE C A, WELSH W A, SHEEHY T W. Helicopter active noise control system:US05310137A[P]. 1994-05-10. [85] MILLOTT T A, YOERKIE C A, WELSH W A, et al. Flight test of active gear-mesh noise control on the S-76 aircraft[C]//Proceedings of the American Helicopter Society 54th Annual Forum. Fairfax:American Helicopter Society, 1998:241-250. [86] HOFFMANN F, MAIER R, JÄNKER P, et al. Helicopter interior noise reduction by using active gearbox struts:AIAA-2006-2604[R]. Reston:AIAA, 2006. [87] BEBESEL M, MAIER R, HOFFMANN F. Reduction of interior noise in helicopters by using active gearbox struts-Results of flight tests[C]//27th European Rotorcraft Forum, 2001. [88] CORBETTA W, VIGONI E, TOSO A, et al. Active control of helicopter's gearbox vibrations and effects on teh cabin noise[C]//34th European Rotorcraft Forum, 2008. [89] BELANGER P, BERRY A, PASCO Y, et al. Multi-harmonic active structural acoustic control of a helicopter main transmission noise using the principal component analysis[J]. Applied Acoustics, 2009, 70(1):153-164. [90] BRENNAN M J, PINNINGTON R J, ELLIOTT S J. Mechanisms of noise transmission through helicopter gearbox support struts[J]. Journal of Vibration and Acoustics, 1994, 116(4):548-554. [91] 雷凌云. 基于自适应杆件的振动主动控制研究[D]. 南京:南京航空航天大学, 2003:1. LEI L Y. Research on active vibration control based on adaptive strut[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2003:1(in Chinese). [92] LU Y, MA X J. Active control of multifrequency helicopter vibrations using discrete model predictive sliding mode control[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(4):668-680. [93] MA X J, LU Y, WANG F J. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control[J]. Journal of Sound and Vibration, 2017, 405:187-207. [94] 马逊军. 主减速器引起的直升机舱内宽频噪声主动控制方法研究[D]. 南京:南京航空航天大学, 2018:100. MA X J. Active control of gearbox induced broadband noise in helicopter interior[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:100(in Chinese). [95] 裘进浩, 袁明, 季宏丽. 大型飞机舱内振动噪声主动控制技术的研究及应用[J]. 航空制造技术, 2010, 53(14):26-29. QIU J H, YUAN M, JI H L. Research and application of vibration noise control technology in large aircraft cabin[J]. Aeronautical Manufacturing Technology, 2010, 53(14):26-29(in Chinese). [96] 侯兰兰, 李明强, 王国胜. 直升机主减速器齿轮传动研究综述[J]. 中国科技信息, 2021(2):31-32. HOU L L, LI M Q, WANG G S. A review of helicopter main gearbox transmission[J]. China Science and Technology Information, 2021(2):31-32(in Chinese). [97] MASUDA T, ABE T, HATTORI K. Prediction method of gear noise considering the influence of the tooth flank finishing method[J]. Journal of Vibration and Acoustics, 1986, 108(1):95-100. [98] O'CONNELL J. Predicting rotorcraft transmission noise[C]//Proceedings of the American Helicopter Society 48th Annual Forum. Fairfax:American Helicopter Society, 1992:919-929. [99] OTTEWILL J R, NEILD S A, WILSON R E. Intermittent gear rattle due to interactions between forcing and manufacturing errors[J]. Journal of Sound and Vibration, 2009, 321(3-5):913-935. [100] KATO M, INOUE K, SHIBATA K, et al.Evaluation of sound power radiated by a gearbox[C]//Proceeding of Inter Gearing 1994, 1994:69-74. [101] 盛冬平. 直升机主减速器传动系统的动力学研究[D]. 南京:南京航空航天大学, 2015:1. SHENG D P. Research on key dynamic problems of helicopter main reducer transmission system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:1(in Chinese). [102] SALZER M L W. Gearbox noise analysis of system dynamics:WHL Research Paper 545[R]. 1977. [103] ROBERT F H, JAMES J Z. Current research activities in drive system technology in support of the NASA rotorcraft program:NASA/TM 2006-214052[R]. Washington, D.C.:NASA, 2006. [104] ROBERT F H, CHARLES J K. Efficiency of high speed helical gear trains:NASA/TM 2003-212222[R]. Washington, D.C.:NASA, 2003. [105] CHIANG T, BADGLEY R H. Reduction of vibration and noise generated by planetary ring gears in helicopter aircraft transmissions[J]. Journal of Engineering for Industry, 1973, 95(4):1149-1158. [106] 吴大观. 美国高速旋翼机传动系统研究计划[J]. 航空制造工程, 1992(1):33-35. WU D G. American high speed rotor transmission System research program[J]. Aviation Engineering & Maintenance, 1992(1):33-35(in Chinese). [107] KISH J G. Sikorsky aircraft Advanced Rotorcraft Transmission (ART) program-final report:NASA-CR-191079[R]. Washington, D.C.:NASA, 1993. [108] 周志红. 基于区间理论的直升机大重合度行星齿轮系功重比优化研究[D]. 合肥:合肥工业大学, 2015:4. ZHOU Z H. Research on helicopter high contact ratio planetary gear train specific power optimization based on the theory of interval mathematics[D]. Hefei:Hefei University of Technology, 2015:4(in Chinese). [109] 洪福顺. 直升机减速器最新发展[J]. 直升机技术, 1996(3):37-41. HONG F S. Progress of helicopter gearbox[J]. Helicopter Technique, 1996(3):37-41(in Chinese). [110] 佘亦曦, 康丽霞, 唐朋. 直升机传动系统的现状与发展研究[J]. 航空科学技术, 2021, 32(1):78-82. SHE Y X, KANG L X, TANG P. Development status and future trend of helicopter transmission system[J]. Aeronautical Science & Technology, 2021, 32(1):78-82(in Chinese). [111] 徐明, 李黔, 李建波. 最优转速旋翼直升机关键技术分析[J]. 航空科学技术, 2017, 28(11):38-41. XU M, LI Q, LI J B. Analysis of helicopter key technologies with optimum speed rotor[J]. Aeronautical Science & Technology, 2017, 28(11):38-41(in Chinese). [112] 王建军, 李润方. 齿轮系统动力学的理论体系[J]. 中国机械工程, 1998, 9(12):55-58. WANG J J, LI R F. Theoretical system of gear system dynamics[J]. China Mechanical Engineering, 1998, 9(12):55-58(in Chinese). [113] 孙智民, 季林红, 沈允文. 2K-H行星齿轮传动非线性动力学[J]. 清华大学学报(自然科学版), 2003, 43(5):636-639. SUN Z M, JI L H, SHEN Y W. Nonlinear dynamics of 2K-H planetary gear train[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(5):636-639(in Chinese). [114] 李润方, 陶泽光, 林腾蛟, 等. 齿轮啮合内部动态激励数值模拟[J]. 机械传动, 2001, 25(2):1-3. LI R F, TAO Z G, LIN T J, et al. Numerical simulation for inner dynamic excitation of gearing[J]. Journal of Mechanical Transmission, 2001, 25(2):1-3(in Chinese). [115] 陈卫东. 某型直升机主减速器行星传动系统动力学建模与分析[D]. 合肥:合肥工业大学, 2014:2. CHEN W D. A helicopter main gear planetary drive system dynamics modeling and analysis[D]. Hefei:Hefei University of Technology, 2014:2(in Chinese). [116] 蒋玲莉, 印道轩, 任红军, 等. 直升机传动系统振动噪声综合试验台:CN205593748U[P]. 2016-09-21. JIANG L L, YIN D X, REN H J, et al. Helicopter transmission system vibration noise comprehensive test platform:CN205593748U[P]. 2016-09-21(in Chinese). [117] 殷鹏. 基于OTPA方法的直升机舱内噪声分析[J]. 中国科技信息, 2019(12):41-45. YIN P. Noise analysis of helicopter cabin based on OTPA method[J]. China Science and Technology Information, 2019(12):41-45(in Chinese). [118] 潘光奇, 朱勇. 直升机传动系统现状和发展综述[J]. 舰船电子工程, 2009, 29(11):33-36, 39. PAN G Q, ZHU Y. Present situation & development summarization of the helicopter transmission system[J]. Ship Electronic Engineering, 2009, 29(11):33-36, 39(in Chinese). [119] 丁文强, 良辰. 丁文强直升机传动技术专家[J]. 航空制造技术, 2013(1/2):50-51. DING W Q, LIANG C. Wenqiang Ding-Expert of helicopter transmission technology[J]. Aeronautical Manufacturing Technology,2013(1/2):50-51(in Chinese). [120] 李坚, 陈亚农, 袁巍. 直升机动力系统噪声研究[J]. 国际航空, 2015(12):71-73. LI J, CHEN Y N, YUAN W. Research on helicopter drive-power system's noise[J]. International Aviation, 2015(12):71-73(in Chinese). [121] 贾万琛, 苗冲冲, 丁霖. 军用直升机噪声限值相关标准浅析[J]. 航空标准化与质量, 2021(1):6-9. JIA W C, MIAO C C, DING L. Analysis on noise limit standard of military helicopter[J]. Aeronautic Standardization & Quality, 2021(1):6-9(in Chinese). [122] 罗乐乐. 直升机传动系统主减速器构型设计方法研究[J]. 机电工程技术, 2021, 50(3):206-208. LUO L L. Research on configuration design method of main reducer of helicopter transmission system[J]. Mechanical & Electrical Engineering Technology, 2021, 50(3):206-208(in Chinese). [123] FLANAGAN P M, ATHERTON W J. Investigation on experimental techniques to detect, locate and quantify gear noise in helicopter transmissions:NASA CR-3847[R]. Washington, D.C.:NASA, 1985. [124] 李磊. 变转速直升机主传动系统试验台的设计及分析[D]. 南京:南京航空航天大学, 2018:10. LI L. Design and analysis of variable-speed helicopter main transmission test stand[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:10(in Chinese). [125] LEVINE L S. Reducing the cost impact of helicopter internal noise control[C]//36th Annual Forum Proceedings of the American Helicopter Society. Fairfax:American Helicopter Society, 1980:1-9. |
[1] | Bo LI, Xiao WANG. Dynamic modeling and modal analysis of coaxial rotors/auxiliary propeller/drive train coupled system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528945-528945. |
[2] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[3] | Fengying ZHENG, Zhimin SHEN, Yaqin LI, Kaizhao XU, Xinhua WANG. Gain adaptive multi-mode switching control for coaxial high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529088-529088. |
[4] | Zhuangzhuang CUI, Xin YUAN, Guoqing ZHAO, Simeng JING, Qijun ZHAO. Influence of control strategy on forward flight performance of coaxial rigid rotor high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529256-529256. |
[5] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[6] | Changhao LIU, Yihua CAO, Xiaomeng MEI, Maosheng WANG, Guanglin ZHANG. Transport effectiveness evaluation of high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530182-530182. |
[7] | Yuqing QIU, Yan LI, Jinxi LANG, Yuxian LIU, Zhong WANG. Robust adaptive attitude control of high-speed helicopters in transition mode [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529927-529927. |
[8] | Yilan ZENG, Dong HAN, Zhuangzhuang LIU, Xin ZHOU. Driving rotation characteristics of a compound helicopter’s rotor undergoing upwash in high⁃speed flight [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529061-529061. |
[9] | Shaoqiang HAN, Wenping SONG, Zhonghua HAN, Jianhua XU. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529064-529064. |
[10] | Zixu WANG, Pan LI, Ke LU, Zhenhua ZHU, Renliang CHEN. Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529069-529069. |
[11] | Jinghui DENG. Key technologies and development for high-speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085-529085. |
[12] | Bowen NIE, Liangquan WANG, Zhiyin HUANG, Long HE, Shipeng YANG, Hongtao YAN, Guichuan ZHANG. Flight dynamics modeling and control scheme design of compound high-speed unmanned helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529848-529848. |
[13] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[14] | Xiaole WANG, Ping SUN, Xin GU, Chunyu ZHAO, Zhenyu HUANG. Low⁃frequency and multi⁃bandgap noise reduction characteristics of acoustic metamaterial⁃based helicopter sidewall [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 428901-428901. |
[15] | Zhaojun GU, Huan ZHAO, Jialiang WANG, Liuyang NIE. Automatic landing method for quad-rotor helicopter based on Markov decision process [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 329652-329652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341