[1] CHETTRI L, BERA R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems[J]. IEEE Internet of Things Journal, 2020, 7(1): 16-32. [2] ZHANGP, MIAO J, HU Z, et al. A survey of ubiquitous network[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(5): 1-6 (in Chinese). 张平, 苗杰, 胡铮, 等. 泛在网络研究综述[J]. 北京邮电大学学报, 2010, 33(5): 1-6. [3] LI B, FEI Z S, ZHANG Y. UAV communications for 5G and beyond: Recent advances and future trends[J]. IEEE Internet of Things Journal, 2019, 6(2): 2241-2263. [4] HOURANI A, KANDEEPAN S, LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communication Letters, 2014, 3(6): 569-572 [5] WANG B, OUYANG J, ZHU W P, et al. Optimal altitude of UAV-BS for minimum boundary outage probability with imperfect channel state information[C]//2019 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway: IEEE Press, 2019. [6] MOZAFFARI M, SAAD W, BENNIS M, et al. Drone small cells in the clouds: Design, deployment and performance analysis[C]//2015 IEEE Global Communications Conference. Piscataway: IEEE Press, 2015: 1-6. [7] CHEN Y C, LI N, WANG C, et al. A 3D placement of unmanned aerial vehicle base station based on multi-population genetic algorithm for maximizing users with different QoS requirements[C]//2018 IEEE 18th International Conference on Communication Technology. Piscataway: IEEE Press, 2018: 967-972. [8] OMRAN A, SBOUI L, KADOCH M, et al. 3D deployment of multiple UAVs for emergent on-demand offloading[C]//2020 International Wireless Communications and Mobile Computing (IWCMC). Piscataway: IEEE Press, 2020: 692-696. [9] JANG I, SHIN H S, TSOURDOS A. Anonymous hedonic game for task allocation in a large-scale multiple agent system[J]. IEEE Transactions on Robotics, 2018, 34(6): 1534-1548. [10] KOULALI S, SABIR E, TALEB T, et al. A green strategic activity scheduling for UAV networks: A sub-modular game perspective[J]. IEEE Communications Magazine, 2016, 54(5): 58-64. [11] NEMER I A, SHELTAMI T R, MAHMOUD A S. A game theoretic approach of deployment a multiple UAVs for optimal coverage[J]. Transportation Research Part A: Policy and Practice, 2020, 140: 215-230. [12] XU Y H, WANG J L, WU Q H, et al. Opportunistic spectrum access in cognitive radio networks: Global optimization using local interaction games[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(2): 180-194. [13] MONDERER D, SHAPLEY L S. Potential games[J]. Games and Economic Behavior, 1996, 14(1): 124-143. [14] MOZAFFARI M, SAAD W, BENNIS M, et al. Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 3949-3963. [15] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. [16] ZHONG X J, GUO Y, LI N, et al. Joint optimization of relay deployment, channel allocation, and relay assignment for UAVs-aided D2D networks[J]. IEEE/ACM Transactions on Networking, 2020, 28(2): 804-817. [17] ZHONG X J, GUO Y, LI N, et al. Deployment optimization of UAV relays for collecting data from sensors: A potential game approach[J]. IEEE Access, 7: 182962-182973. |