[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R].Washington,D.C.:NASA, 2014. [2] CHRISTOPHER L R, SUSAN X Y. Prediction of high lift:Review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38:145-180. [3] TINOCO E N, BOGUE D R. Progress toward CFD for full flight envelope[J]. Aeronautical Journal, 2005,109:451-460 [4] ROGERS S E, ROTH K, NASH S M. Validation of computed high-lift flows with significant wind-tunnel effect[J]. AIAA Journal, 2001, 39(10):1884-1892. [5] RUMSEY C L, GATSKI T B, SUSAN X Y, et al. Prediction of high-lift flows using turbulent closure models:AIAA-1997-2260[R]. Reston, VA:AIAA, 1997. [6] RUDNIK R, VON GEYR H F. The European high lift project EUROLIFT Ⅱ-objectives, approach, and structure:AIAA-2007-4296[R]. Reston, VA:AIAA, 2007. [7] RUMSEY C L, LONG M, STUEVER R A. Summary of the first AIAA CFD high lift prediction workshop(invited):AIAA-2011-939[R]. Reston, VA:AIAA, 2011. [8] 王运涛, 洪俊武, 孟德虹. 湍流模型对梯形翼高升力构型的影响[J]. 空气动力学学报, 2013, 31(1):52-55. WANG Y T, HONG J W, MENG D H. The influence of turbulent models to trap wing simulation[J]. Acta Aerodynamica Sinica, 2013, 31(1):52-55(in Chinese). [9] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H,et al.Numerical study on simulation technology of the high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese). [10] 王运涛, 李松, 孟德虹, 等. 不同襟翼偏角梯形翼构型气动特性数值模拟[J]. 航空学报, 2015, 36(6):1823-1829. WANG Y T, LI S, MENG D H, et al. Numerical simulation of the aerodynamic characteristics of the trapezoidal wing configuration with different flap angles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1823-1829(in Chinese). [11] 洪俊武, 王运涛, 孟德虹. 结构网格方法对高升力构型的应用研究[J]. 空气动力学学报, 2013, 31(1):75-81. HONG J W, WANG Y T, MENG D H. Numerical research of high-lift configurations by structured mesh method[J]. Acta Aerodynamica Sinica, 2013, 31(1):75-81(in Chinese). [12] 王运涛, 孟德虹, 邓小刚. 多段翼型高精度数值模拟技术研究[J]. 空气动力学学报, 2013, 31(1):88-93. WANG Y T, MENG D H, DENG X G. High-order numerical study of complex flow over multi-element airfoil[J]. Acta Aerodynamica Sinica, 2013, 31(1):88-93(in Chinese). [13] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711. [14] 李松, 王光学, 王运涛, 等. WCNS格式在梯形翼高升力构型模拟中的应用研究[J]. 空气动力学学报, 2014, 32(4):439-445. LI S, WANG G X, WANG Y T, et al. Numerical simulation of high lift trapezoidal wing configuration with WCNS scheme[J]. Acta Aerodynamica Sinica, 2014, 32(4):439-445(in Chinese). [15] 赵轲, 高正红, 黄江涛, 等. 基于分区拼接网格技术高升力装置流场数值模拟[J]. 应用力学学报, 2012, 29(1):70-75. ZHAO K, GAO Z H, HUANG J T, et al. Numerical simulation of flow around high-lift device based on zonal patched-grid technology[J]. Chinese Journal of Applied Mechanics, 2012, 29(1):70-75(in Chinese). [16] 李萍, 李根国, 张小柯, 等. NASA高升力TrapWing全展模型的数值模拟[J]. 力学季刊, 2012, 33(2):249-255. LI P, LI G G, ZHANG X K, et al. Numerical simulation of NASA high lift trapwing full span model[J]. Chinese Quarterly of Mechanics, 2012, 33(2):249-255(in Chinese). [17] 颜洪, 麻蓉, 聂智军, 等. 高升力标模确认计算研究[J]. 航空计算技术, 2014, 44(1):34-44. YAN H, MA R, NIE Z J, et al. CFD validation for a high-lift model[J]. Aeronautical Computing Technique, 2014, 44(1):34-44(in Chinese). [18] 高飞飞, 颜洪, 芦彩香. NASA Trap Wing高升力标模数值模拟研究[J]. 航空计算技术, 2015, 45(1):84-90. GAO F F, YAN H, LU C X. Numerical simulation research of NASA trap wing model[J]. Aeronautical Computing Technique, 2015, 45(1):84-90(in Chinese). [19] 赵钟, 赫新, 张来平, 等. HyperFLOW软件数值模拟Trap Wing高升力外形[J]. 空气动力学学报, 2015, 33(5):594-602. ZHAO Z, HE X, ZHANG L P, et al. Numerical research of NASA high-lift trap wing model based on HyperFLOW[J]. Acta Astronautica Sinica, 2015, 33(5):594-602(in Chinese). [20] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062. [21] VAN LEER B. Towards the ultimate conservation difference scheme Ⅱ, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14:361-370. [22] YOON S, JAMESON A. Lower-upper symmetric Gauss-Sediel method for the Euler and Navier-Stokes equation[J]. AIAA Journal,1988, 26(9):1025-1026. [23] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992. [24] RUMSEY C L, SLOTNICK J P. Overview and summary of the second AIAA high lift prediction workshop:AIAA-2014-0747[R]. Reston, VA:AIAA, 2014. |