[1] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese). [2] LARAMEE R S, HAUSER H, DOLEISCH H, et al. The state of the art in flow visualization:dense and texture-based techniques[J]. Computer Graphics Forum, 2004, 23(2):203-221. [3] MCLOUGHLIN T, LARAMEE R S, PEIKERT R, et al. Over two decades of integration-based, geometric flow visualization[J]. Computer Graphics Forum, 2010, 29(6):1807-1829. [4] POST F H, VROLIJK B, HAUSER H, et al. The state of the art in flow visualisation:feature extraction and tracking[J]. Computer Graphics Forum, 2003, 22(4):775-792. [5] BRUCKSCHEN R, KUESTER F, HAMANN B, et al. Real-time out-of-core visualization of particle traces[C]//Proceedings of the IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics. Piscataway:IEEE Press, 2001:45-50. [6] ELLSWORTH D, GREEN B, MORAN P. Interactive terascale particle visualization[C]//IEEE Visualization 2004. Piscataway:IEEE, 2004:353-360. [7] CABRAL B, LEEDOM L C. Imaging vector fields using line integral convolution[C]//Proceedings of SIGGRAPH 1993. New York:ACM Press, 1993:263-270. [8] SHEN H W, KAO D L. UFLIC:A line integral convolution algorithm for visualizing unsteady flows[C]//Proceedings of the 8th Conference on Visualization. Washington, D.C.:IEEE Computer Society Press, 1997:317-322. [9] HALLER G. Distinguished material surfaces and coherent structures in three-dimensional fluid flows[J]. Physica D:Nonlinear Phenomena, 2001, 149(4):248-277. [10] GARTH C, GERHARDT F, TRICOCHE X, et al. Efficient computation and visualization of coherent structures in fluid flow applications[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6):1464-1471. [11] EDMUNDS M, LARAMEE R S, CHEN G N, et al. Surface-based flow visualization[J]. Computers & Graphics, 2012, 36(8):974-990. [12] KENDALL W, WANG J Y, ALLEN M, et al. Simplified parallel domain traversal[C]//Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. Piscataway:IEEE, 2011:1-11. [13] BLUMOFE R D, LEISERSON C E. Scheduling multithreaded computations by work stealing[C]//Proceedings 35th Annual Symposium on Foundations of Computer Science. Piscataway:IEEE, 1994:356-368. [14] DINAN J, LARKINS D B, SADAYAPPAN P, et al. Scalable work stealing[C]//Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. New York:ACM Press, 2009:11. [15] PUGMIRE D, CHILDS H, GARTH C, et al. Scalable computation of streamlines on very large datasets[C]//Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. New York:ACM Press, 2009:12. [16] LU K W, SHEN H W, PETERKA T. Scalable computation of stream surfaces on large scale vector fields[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Piscataway:IEEE, 2014:1008-1019. [17] MVLLER C, CAMP D, HENTSCHEL B, et al. Distributed parallel particle advection using work requesting[C]//2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV). Piscataway:IEEE, 2013:1-6. [18] MOROZOV D, PETERKA T. Efficient delaunay tessellation through k-d tree decomposition[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Piscataway:IEEE, 2016:728-738. [19] ZHANG J, GUO H Q, HONG F, et al. Dynamic load balancing based on constrained k-d tree decomposition for parallel particle tracing[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1):954-963. [20] RHODES P J, TANG X, BERGERON R D, et al. Iteration aware prefetching for large multidimensional datasets[C]//Proceedings of the 17th International Conference on Scientific and Statistical Database Management. Los Alamitos:IEEE Computer Society Press, 2005:45-54. [21] CHEN C M, XU L, LEE T, et al. A flow-guided file layout for out-of-core streamline computation[C]//2012 IEEE Pacific Visualization Symposium. Piscataway:IEEE, 2012:145-152. [22] CHEN C M, NOUANESENGSY B, LEE T Y, et al. Flow-guided file layout for out-of-core pathline computation[C]//IEEE Symposium on Large Data Analysis and Visualization (LDAV). Piscataway:IEEE, 2012:109-112. [23] SISNEROS R, JONES C, HUANG J, et al. A multi-level cache model for run-time optimization of remote visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(5):991-1003. [24] PETERKA T, ROSS R, NOUANESENGSY B, et al. A study of parallel particle tracing for steady-state and time-varying flow fields[C]//2011 IEEE International Parallel & Distributed Processing Symposium. Piscataway:IEEE, 2011:580-591. [25] NOUANESENGSY B, LEE T Y, LU K W, et al. Parallel particle advection and FTLE computation for time-varying flow fields[C]//Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Piscataway:IEEE, 2012:1-11. [26] NOUANESENGSY B, LEE T Y, SHEN H W. Load-balanced parallel streamline generation on large scale vector fields[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12):1785-1794. [27] CHEN L, FUJISHIRO I. Optimizing parallel performance of streamline visualization for large distributed flow datasets[C]//2008 IEEE Pacific Visualization Symposium. Piscataway:IEEE, 2008:87-94. [28] YU H F, WANG C L, MA K L. Parallel hierarchical visualization of large time-varying 3D vector fields[C]//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. New York:ACM Press, 2007:12. [29] BERGER, BOKHARI. A partitioning strategy for nonuniform problems on multiprocessors[J]. IEEE Transactions on Computers, 1987, C-36(5):570-580. [30] SIMON H D. Partitioning of unstructured problems for parallel processing[J]. Computing Systems in Engineering, 1991, 2(2-3):135-148. [31] KARYPIS G, KUMAR V. Parallel multilevel k-way partitioning scheme for irregular graphs[C]//Proceedings of the 1996 ACM/IEEE Conference on Supercomputing (CDROM). New York:ACM Press, 1996:35. [32] CATALYUREK U V, BOMAN E G, DEVINE K D, et al. Hypergraph-based dynamic load balancing for adaptive scientific computations[C]//2007 IEEE International Parallel and Distributed Processing Symposium. Piscataway:IEEE, 2007:1-11. [33] GUO H Q, ZHANG J, LIU R C, et al. Advection-based sparse data management for visualizing unsteady flow[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12):2555-2564. [34] GERNDT A, HENTSCHEL B, WOLTER M, et al. VIRACOCHA:an efficient parallelization framework for large-scale CFD post-processing in virtual environments[C]//Proceedings of the 2004 ACM/IEEE Conference on Supercomputing. Piscataway:IEEE, 2004:50. [35] RAFTERY A E. A model for high-order Markov chains[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1985, 47(3):528-539. [36] ZHANG J, GUO H Q, YUAN X R. Efficient unsteady flow visualization with high-order access dependencies[C]//2016 IEEE Pacific Visualization Symposium (PacificVis). Piscataway:IEEE, 2016:80-87. [37] HONG F, ZHANG J, YUAN X R. Access pattern learning with long short-term memory for parallel particle tracing[C]//2018 IEEE Pacific Visualization Symposium (PacificVis). Piscataway:IEEE, 2018:76-85. [38] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [39] ZHANG J, GUO H Q, YUAN X R, et al. Dynamic data repartitioning for load-balanced parallel particle tracing[C]//2018 IEEE Pacific Visualization Symposium (PacificVis). Piscataway:IEEE, 2018:86-95. [40] KARYPIS G, KUMAR V. ParMETIS:Parallel graph partitioning and sparse matrix ordering library[R]. Minnesota:University of Minnesota, 1997. [41] ZHANG J, YANG C H, LI Y D, et al. LBVis:interactive dynamic load balancing visualization for parallel particle tracing[C]//2020 IEEE Pacific Visualization Symposium (PacificVis). Piscataway:IEEE, 2020:91-95. |