1 |
MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006.
|
2 |
GRZYCH M L, MASON J. 6.8 weather conditions associated with jet engi ne power loss and damage due to ingestion of ice particles: what we’ve learned through 2009[C]∥Proc of the 14th Conference on Aviation, Range, and Aerospace Meteorology. 2010.
|
3 |
袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术, 2018, 39(12): 2641-2650.
|
|
YUAN Q H, FAN J, BAI G C. Review on ice crystal icing in aeroengine[J]. Journal of Propulsion Technology, 2018, 39(12): 2641-2650 (in Chinese) .
|
4 |
沈浩, 韩冰冰, 张丽芬. 航空发动机中冰晶结冰的研究进展[J]. 实验流体力学, 2020, 34(6): 1-7.
|
|
SHEN H, HAN B B, ZHANG L F. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1-7 (in Chinese).
|
5 |
黄平, 卜雪琴, 刘一鸣, 等. 混合相/冰晶条件下的结冰研究综述[J]. 航空学报, 2022, 43(5): 025178.
|
|
HUANG P, BU X Q, LIU Y M, et al. Mixed phase/glaciated ice accretion: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 025178 (in Chinese).
|
6 |
马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 41-52.
|
|
MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 41-52 (in Chinese).
|
7 |
卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12): 124085.
|
|
BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085 (in Chinese).
|
8 |
ZHONG F H, WEI Z, CHEN J J, et al. Dynamic behavior and heat transfer characteristics of non-spherical ice crystals in high-temperature air flow [J].Transactions of Nanjing University of Aeronautics and Astronautics,2023, 40(2): 205-215.
|
9 |
MASON B J. On the melting of hailstones[J]. Quarterly Journal of the Royal Meteorological Society, 1956, 82(352): 209-216.
|
10 |
RASMUSSEN R, PRUPPACHER H R. A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: a wind tunnel study of frozen drops of radius < 500 μm[J]. Journal of the Atmospheric Sciences, 1982, 39(1): 152-158.
|
11 |
BARTKUS T P, STRUK P, TSAO J C. Development of a coupled air and particle thermal model for engine icing test facilities[J]. SAE International Journal of Aerospace, 2015, 8(1): 15-32.
|
12 |
ZHANG J C, CHEN W F, ZHANG L F. Three dimensional numerical simulation of ice crystal melting under different influencing factors[J]. Journal of Physics: Conference Series, 2018, 1064: 012026.
|
13 |
HAN Y Q, KALA S, YAN S H, et al. Partial melting time model verification of a levitated ice particle[J]. Cold Regions Science and Technology, 2020, 173: 103013.
|
14 |
HAUK T, ROISMAN I V, TROPEA C D. Investigation of the melting behaviour of ice particles in an acoustic levitator[C]∥Proceedings of the 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2014.
|
15 |
YAN S, PALACIOS J. Experimental quantification of partial melting in a single frozen drop[C]∥8th AIAA Atmospheric and Space Environments Conference. 2016.
|
16 |
PALACIOS J, YAN S H, TAN C, et al. Experimental measurement of frozen and partially melted water droplet impact dynamics[C]∥Proceedings of the 6th AIAA Atmospheric and Space Environments Conference. 2014.
|
17 |
HINDMARSH J P, RUSSELL A B, CHEN X D. Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet[J]. International Journal of Heat and Mass Transfer, 2003, 46(7): 1199-1213.
|
18 |
ALVAREZ M, KREEGER R E, PALACIOS J. Experimental evaluation of the impact behavior of partially melted ice particles[J]. International Journal of Impact Engineering, 2019, 123: 70-76.
|