[1] REN J X, YAO C F, ZHANG D H, et al. Research on tool path planning method of four-axis high-efficiency slot plunge milling for open blisk[J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(1-2):101-109. [2] ZHU D, YU L G, ZHAO J B, et al. Research on shaping law in electrochemical machining for the leading/trailing edge of the blade[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4):559-565. [3] WANG J, XU Z Y, WANG J T, et al. Electrochemical machining on blisk channels with a variable feed rate mode[J]. Chinese Journal of Aeronautics, 2021, 34(6):151-161. [4] ZHU D, ZHOU Y W, ZHANG R H, et al. Investigation of leveling ability improvement in pulse electrochemical machining for aero structural components[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):1723-1732. [5] 孙伦业, 徐正扬, 朱荻. 镍基高温合金整体叶盘叶栅通道电解加工的成形精度控制[J]. 机械科学与技术, 2013, 32(8):1230-1234, 1238. SUN L Y, XU Z Y, ZHU D. The accuracy control of Ni-based superalloy blisk channels by electrochemical machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(8):1230-1234, 1238(in Chinese). [6] 韦树辉, 徐正扬, 孙伦业, 等. 整体叶盘叶栅通道电解加工工具电极进给方向优化设计[J]. 电加工与模具, 2012(4):21-25, 32. WEI S H, XU Z Y, SUN L Y, et al. Optimization of cathode feed direction in radial feed electrochemical machining[J]. Electromachining & Mould, 2012(4):21-25, 32(in Chinese). [7] 廖德平, 李寒松, 徐正扬, 等. 整体叶盘叶栅通道径向进给电解加工电场仿真和试验研究[J]. 电加工与模具, 2013(2):30-34. LIAO D P, LI H S, XU Z Y, et al. The electric field simulation and experimental study on the method of electrode radial feeding in blisk ECM[J]. Electromachining & Mould, 2013(2):30-34(in Chinese). [8] 张矿磊, 曲宁松, 朱栋, 等. 整体叶盘叶栅通道电解加工流场仿真研究[J]. 机械制造与自动化, 2016, 45(6):98-101. ZHANG K L, QU N S, ZHU D, et al. Investigation on flow field of cascade passage in electrochemical machining of blades[J]. Machine Building & Automation, 2016, 45(6):98-101(in Chinese). [9] 周小超, 陈远龙, 侯亭波, 等. 基于气液两相流模型的电解加工多场耦合仿真[J]. 中国机械工程, 2019, 30(10):1135-1141. ZHOU X C, CHEN Y L, HOU T B, et al. Multi-physics coupling simulation of ECM based on gas-liquid two-phase flow model[J]. China Mechanical Engineering, 2019, 30(10):1135-1141(in Chinese). [10] 陈远龙, 方明, 裴迪, 等. 叶片电化学加工过程多场耦合仿真[J]. 中国机械工程, 2016, 27(22):3087-3092. CHEN Y L, FANG M, PEI D, et al. Multi-physics coupling simulation of ECM processes for compressor blade[J]. China Mechanical Engineering, 2016, 27(22):3087-3092(in Chinese). [11] 江伟, 干为民, 张晔. 叶片脉冲电解加工过程的多场耦合模拟[J]. 电加工与模具, 2015(2):24-28, 37. JIANG W, GAN W M, ZHANG Y. Multiphysics numerical simulation of pulse electrochemical machining for a engine blade[J]. Electromachining & Mould, 2015(2):24-28, 37(in Chinese). [12] ZHOU X C, CAO C Y, WANG H X, et al. Study on the multi-field coupling model of electrolyte temperature distribution in electrochemical machining[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(5-6):1655-1662. [13] LIU G D, TONG H, LI Y, et al. Multiphysics research on electrochemical machining of micro holes with internal features[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(5-6):1527-1542. [14] FUJISAWA T, INABA K, YAMAMOTO M, et al. Multi-physics simulation of electro-chemical machining process for three-dimensional compressor blade[C]//Proceedings of ASME/JSME 20075th Joint Fluids Engineering Conference. New York:ASME, 2009:1779-1786. [15] KLOCKE F, KLINK A, VESELOVAC D, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes[J]. CIRP Annals, 2014, 63(2):703-726. [16] DABROWSKI L, PACZKOWSKI T. Computer simulation of two-dimensional electrolyte flow in electrochemical machining[J]. Russian Journal of Electrochemistry, 2005, 41(1):91-98. [17] JERIN A, KARUNAKARAN K. Advances in simulation modeling and analysis of curvilinear electro chemical machining process[J]. Materials Today:Proceedings, 2021, 37:1588-1591. [18] WANG M H, LIU W S, PENG W. Multiphysics research in electrochemical machining of internal spiral hole[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(5-8):749-756. [19] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238. [20] 张淑佳, 李贤华, 朱保林, 等. k-ε涡粘湍流模型用于离心泵数值模拟的适用性[J]. 机械工程学报, 2009, 45(4):238-242. ZHANG S J, LI X H, ZHU B L, et al. Applicability of k-ε eddy viscosity turbulence models on numerical simulation of centrifugal pump[J]. Journal of Mechanical Engineering, 2009, 45(4):238-242(in Chinese). [21] WANG Y D, XU Z Y, LIU J, et al. Study on flow field of electrochemical machining for large size blade[J]. International Journal of Mechanical Sciences, 2021, 190:106018. [22] LI J Z, WANG D Y, ZHU D, et al. Analysis of the flow field in counter-rotating electrochemical machining[J]. Journal of Materials Processing Technology, 2020, 275:116323. [23] 王福元, 徐家文, 赵建社, 等. 基于加工过程数值模拟的电解加工参数选择方法[J]. 中国机械工程, 2006, 17(7):716-718, 723. WANG F Y, XU J W, ZHAO J S, et al. A method of selecting electrochemical machining parameters based on numerical simulation of electrochemical machining process[J]. China Mechanical Engineering, 2006, 17(7):716-718, 723(in Chinese). [24] FUJISAWA T, INABA K, YAMAMOTO M, et al. Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade[J]. Journal of Fluids Engineering, 2008, 130(8):081602. [25] JIANG X C, LIU J, ZHU D, et al. Research on stagger coupling mode of pulse duration and tool vibration in electrochemical machining[J]. Applied Sciences, 2018, 8(8):1296. [26] 王明明, 周泽生, 姜小琛, 等. 基于高速摄像的脉动态电解加工电流特性研究[J]. 机械制造与自动化, 2019, 48(6):7-10, 28. WANG M M, ZHOU Z S, JIANG X C, et al. Study of current characteristics of pulse dynamic electrochemical machining based on high-speed camera[J]. Machine Building & Automation, 2019, 48(6):7-10, 28(in Chinese). [27] DECONINCK D, DAMME S V, DECONINCK J. A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part II:Numerical simulation[J]. Electrochimica Acta, 2012, 69:120-127. [28] FANG X L, QU N S, ZHANG Y D, et al. Improvement of hole exit accuracy in electrochemical drilling by applying a potential difference between an auxiliary electrode and the anode[J]. Journal of Materials Processing Technology, 2014, 214(3):556-564. [29] ZHAO X, JIA Z X, LI W, et al. Fabrication of optimized streamlined micro nozzles by hybrid electrochemical techniques[J]. Journal of Micromechanics and Microengineering, 2018, 28(12):125006. [30] 马新周, 罗志坚, 胡纯蓉, 等. 双相Ti-48Al-2Cr-2 Nb合金电解加工表面微观形貌演变研究[J]. 包装学报, 2020, 12(4):45-56. MA X Z, LUO Z J, HU C R, et al. The microstructure evolution of two-phase Ti-48Al-2Cr-2 Nb alloy during electrochemical machining[J]. Packaging Journal, 2020, 12(4):45-56(in Chinese). [31] DECONINCK D, VAN DAMME S, ALBU C, et al. Study of the effects of heat removal on the copying accuracy of the electrochemical machining process[J]. Electrochimica Acta, 2011, 56(16):5642-5649. [32] 徐家文, 云乃彰, 王建业. 电化学加工技术:原理·工艺及应用[M]. 北京:国防工业出版社, 2008. XU J W, YUN N Z, WANG J Y. Electrochemical machining technique:Principle, technology and application[M]. Beijing:National Defense Industry Press, 2008(in Chinese). |