[1] 崔德刚. 浅谈民用大飞机结构技术的发展[J]. 航空学报, 2008, 29(3):573-582. CUI D G. Structure technology development of large commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):573-582(in Chinese). [2] DEGENHARDT R, CASTRO S G P, ARBELO M A, et al. Future structural stability design for composite space and airframe structures[J]. Thin-Walled Structures, 2014, 81:29-38. [3] HAO P, WANG B, TIAN K, et al. Integrated optimization of hybrid-stiffness stiffened shells based on sub-panel elements[J]. Thin-Walled Structures, 2016, 103:171-182. [4] GE D Y, MO Y M, HE B L, et al. Experimental and numerical investigation of stiffened composite curved panel under shear and in-plane bending[J]. Composite Structures, 2016, 137:185-195. [5] GLISZCZYNSKI A, KUBIAK T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression[J]. Composite Structures, 2017, 169:52-61. [6] ZIMMERMANN R, ROLFES R. POSICOSS-improved postbuckling simulation for design of fibre composite stiffened fuselage structures[J]. Composite Structures, 2006, 73(2):171-174. [7] DEGENHARDT R, ROLFES R, ZIMMERMANN R, et al. COCOMAT-improved material exploitation of composite airframe structures by accurate simulation of postbuckling and collapse[J]. Composite Structures, 2006, 73(2):175-178. [8] DEGENHARDT R, KLING A, ROHWER K, et al. Design and analysis of stiffened composite panels including post-buckling and collapse[J]. Computers & Structures, 2008, 86(9):919-929. [9] MERT M, KAYRAN A. Post-buckling load redistribution of stiffened panels in aircraft wingbox structures[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2016:1974. [10] GENG X L, JI F F, WANG J, et al. Experimental and numerical investigations of compression stability of stiffened composite panel with ply interleaving[J]. Journal of Composite Materials, 2017, 51(26):3647-3656. [11] ZHAO L B, WANG K K, DING F, et al. A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding[J]. Results in Physics, 2019, 13:102205. [12] QIN T, PENG L, MA B, et al. Experimental and numerical investigation on compressive stability of stiffened composite panel with multiple stringers and frames[J]. Frontiers in Aerospace Engineering, 2017, 6:28-38. [13] WANG Y, WANG F S, JIA S Q, et al. Experimental and numerical studies on the stability behavior of composite panels stiffened by tilting hat-stringers[J]. Composite Structures, 2017, 174:187-195. [14] KOLANU N R, RAJU G, RAMJI M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J]. Composite Structures, 2018, 196:135-154. [15] STOWELL E Z, SCHWARTZ E B. Critical stress for an infinitely long plate with elastically restrained edges under combined shear and direct stress:NACA WR-L-340[R].Washington,D.C.:NACA, 1943. [16] 王彬文,陈向明,邓凡臣,等. 飞机壁板复杂载荷试验技术研究综述[J/OL]. 航空学报, (2021-02-24),[2021-04-30]. doi:10.7527/S1000-6893.2021.24987. WANG B W, CHEN X M, DENG F C, et al. Review of complex load test technology for aircraft panel[J/OL]. Acta Aeronautica et Astronautica Sinica, (2021-02-24),[2021-04-30]. doi:10.7527/S1000-6893.2021.24987(in Chinese). [17] TIMOSHENKO S P. Stability of webs of plate girders[J]. Engineering, 1935, 238:207. [18] WAY S. Stability of rectangular plates under shear and bending forces[J]. Journal of Applied Mechanics, 1936, 3(4):A131-A135. [19] JOHNSON A E J, BUCHERT K P. Critical combinations of bending, shear and transverse compressive stresses for buckling of infinitely long flat plates:NACA TN 2536[R].Washington,D.C.:NACA, 1951. [20] WEAVER P M, NEMETH M P. Improved design formulas for buckling of orthotropic plates under combined loading[J]. AIAA Journal, 2008, 46(9):2391-2396. [21] BEERHORST M, SEIBEL M, MITTELSTEDT C. Buckling behavior of an orthotropic plate strip under combined compression and shear[J]. Journal of Aircraft, 2011, 48(4):1360-1367. [22] JOHNS D J. Shear buckling of isotropic and orthotropic plates:A review:TR 3677[R]. London:Ministry of Defense, 1971. [23] MARCH H. Buckling of flat plywood plates in compression, shear or combined compression and shear:Rep. 1316[R]. Forest Products Lab., 1956. [24] WANG B W, CHEN X M, SUN X S, et al. Interaction formulae for buckling and failure of orthotropic plates under combined axial compression/tension and shear[J]. Chinese Journal of Aeronautics, 2021. https://doi.org/10.1016/j.cja.2021.01.021P [25] CHEN X M, SUN X S, CHEN P H, et al. A delamination failure criterion considering the effects of through-thickness compression on the interlaminar shear failure of composite laminates[J]. Composite Structures, 2020, 241:112121. [26] CHEN X M, SUN X S, CHEN P H, et al. Rationalized improvement of Tsai-Wu failure criterion considering different failure modes of composite materials[J/OL]. Composite Structures, (2020-10-16),[2021-04-30]. https://doi. org/10.1016/j.compstruct.2020.113120 [27] CHEN X M, SUN X S, WANG B W, et al. An improved longitudinal failure criterion for UD composites based on kinking model[J/OL]. Mechanics of Advanced Materials and Structures, (2021-03-25),[2021-04-30]. https://doi.org/10.1080/15376494.2020.1799269. [28] GU J F, CHEN P H. Some modifications of Hashin's failure criteria for unidirectional composite materials[J]. Composite Structures, 2017, 182:143-152. [29] 中国飞机强度研究所. 一种能够均匀施加轴向压缩和剪切载荷的试验装置:CN201210528616.7[P]. 2013-04-09. Aircraft Strength Research Institute of China. A test system capable of uniformly applying axial compression and shear loads:CN201210528616.7[P]. 2013-04-09(in Chinese). |