Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (14): 227927-227927.doi: 10.7527/S1000-6893.2022.27927
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Haoyuan REN, Yi WANG(), Liang WANG, Jianbo ZHOU, Hanjiang CHANG, Yipeng CAI, Bao LEI, Weiqun ZHANG
Received:
2022-08-16
Revised:
2022-09-15
Accepted:
2022-12-13
Online:
2023-07-25
Published:
2022-12-22
Contact:
Yi WANG
E-mail:ywangcalt@163.com
Supported by:
CLC Number:
Haoyuan REN, Yi WANG, Liang WANG, Jianbo ZHOU, Hanjiang CHANG, Yipeng CAI, Bao LEI, Weiqun ZHANG. Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 227927-227927.
Table 2
Displacement and equivalent support stiffness at the position of shaft and locking pin under different loads (room temperature)
工况 | 载荷值/N | 转轴区域 | 锁紧销区域 | ||
---|---|---|---|---|---|
位移/mm | 刚度/(107N·m-1) | 位移/mm | 刚度/(107N·m-1) | ||
1 | 100 | 9.090 9 | 4.434 7 | ||
2 | 200 | 0.001 1 | 9.090 9 | 0.002 2 | 4.656 2 |
3 | 300 | 0.002 2 | 9.413 5 | 0.004 3 | 4.843 9 |
4 | 500 | 0.004 2 | 10.059 2 | 0.008 3 | 5.920 6 |
5 | 1 000 | 0.009 1 | 10.570 5 | 0.015 | 8.347 9 |
6 | 2 000 | 0.018 | 11.548 1 | 0.025 3 | 10.442 5 |
7 | 5 000 | 0.042 2 | 12.838 3 | 0.049 9 | 13.289 4 |
8 | 10 000 | 0.079 2 | 13.810 0 | 0.083 7 | 15.612 5 |
9 | 20 000 | 0.148 8 | 14.925 6 | 0.142 4 | 18.459 1 |
Table 3
Equivalent support stiffness of shaft and locking pin at different temperatures
序号 | 载荷值 /N | 转轴区域刚度kaxis/(107N·m-1) | 锁紧销区域刚度kpin/(107N·m-1) | ||||
---|---|---|---|---|---|---|---|
300 ℃ | 500 ℃ | 700 ℃ | 300 ℃ | 500 ℃ | 700 ℃ | ||
1 | 100 | 8.651 8 | 8.092 1 | 7.568 3 | 4.286 8 | 4.051 4 | 3.861 0 |
2 | 200 | 8.892 0 | 8.301 3 | 7.816 3 | 4.492 9 | 4.250 8 | 4.059 8 |
3 | 300 | 9.094 0 | 8.503 0 | 8.025 1 | 4.665 3 | 4.433 4 | 4.266 8 |
4 | 500 | 9.415 4 | 8.842 9 | 8.345 4 | 5.753 9 | 5.582 3 | 5.431 3 |
5 | 1 000 | 10.077 0 | 9.476 2 | 8.968 5 | 8.074 3 | 7.798 7 | 7.495 8 |
6 | 2 000 | 10.937 7 | 10.300 3 | 9.755 4 | 9.996 0 | 9.497 3 | 9.022 1 |
7 | 5 000 | 12.214 6 | 11.486 5 | 10.869 3 | 12.732 1 | 12.034 8 | 11.414 2 |
8 | 10 000 | 13.125 3 | 12.361 7 | 11.701 0 | 14.899 2 | 14.017 8 | 13.209 5 |
9 | 20 000 | 14.197 1 | 13.478 1 | 12.829 8 | 17.520 9 | 16.372 7 | 15.337 5 |
Table 4
Simulated value, experimental value and relative error of connection stiffness Kθ of folding mechanism
Mx /(N·m) | KθT/(104N·m·rad-1) | KθE1/(104N·m·rad-1) | R1/% | KθE2/(104N·m·rad-1) | R2/% | KθE3/(104N·m·rad-1) | R3/% |
---|---|---|---|---|---|---|---|
145 | 3.258 0 | 4.449 3 | 36.6 | 4.283 5 | 31.5 | 5.452 3 | 67.4 |
290 | 3.634 1 | 4.074 6 | 12.1 | 4.059 6 | 11.7 | 4.594 6 | 26.4 |
435 | 3.846 4 | 3.942 8 | 2.5 | 3.904 0 | 1.5 | 3.920 2 | 1.9 |
580 | 3.892 7 | 4.109 9 | 5.6 | 3.840 6 | -1.3 | 3.789 6 | -2.6 |
725 | 3.898 0 | 4.087 2 | 4.9 | 3.856 8 | -1.1 | 3.751 6 | -3.8 |
870 | 3.903 3 | 4.024 4 | 3.1 | 3.919 7 | 0.4 | 3.456 9 | -11.4 |
1 015 | 3.908 7 | 4.314 3 | 10.4 | 4.133 9 | 5.8 | 3.739 2 | -4.3 |
1 160 | 3.908 7 | 4.686 4 | 19.9 | 4.445 3 | 13.7 | 3.853 2 | -1.4 |
1 305 | 3.914 1 | 4.750 5 | 21.4 | 4.565 4 | 16.6 | 3.590 1 | -8.3 |
1 450 | 3.919 4 | 4.700 8 | 19.9 | 4.488 6 | 14.5 | 3.847 6 | -1.8 |
1 595 | 3.924 8 | 4.671 5 | 19.0 | 4.466 4 | 13.8 | 3.813 8 | -2.8 |
1 740 | 3.935 6 | 4.529 4 | 15.1 | 4.563 2 | 15.9 | 3.409 9 | -13.4 |
1 | HEALY F, CHEUNG R C, NEOFET T, et al. Folding wingtips for improved roll performance[C]∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
2 | FRANCESCO D C, ROBERTO S, ROBERTO F, et al. Design optimization of interfacing attachments for the deployable wing of an unmanned re-entry vehicle[J]. Algorithms, 2021, 14(5): 141. |
3 | 宋慧心, 金磊. 折叠翼飞行器的动力学建模与稳定控制[J]. 力学学报, 2020, 52(6): 1548-1559. |
SONG H X, JIN L. Dynamic modeling and stability control of folding wing aircraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559 (in Chinese). | |
4 | DUSSART G X, LONE M M, O'ROURKE C, et al. In-flight folding wingtip system: inspiration from the XB-70 Valkyrie[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
5 | 曹奇凯, 王鄢, 姚念奎, 等. 先进舰载战斗机强度设计技术发展与实践[J]. 航空学报, 2021, 42(8): 525793. |
CAO Q K, WANG Y, YAO N K, et al. Development and application of strength design technology of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525793 (in Chinese). | |
6 | CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. |
7 | LI D C, ZHAO S W, RONCH A DA, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100: 46-62. |
8 | 王强, 马志赛, 张欣, 等. 基于模态综合法的含间隙折叠舵面动态特性分析[J]. 航空学报, 2020, 41(5): 223507. |
WANG Q, MA Z S, ZHANG X, et al. Dynamic characteristic analysis for a folding fin with freeplay nonlinearities based on mode synthesis method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 223507 (in Chinese). | |
9 | XIE C C, CHEN Z Y, AN C. Aeroelastic response of a Z-shaped folding wing during the morphing process[J]. AIAA Journal, 2022, 60(5): 3166-3179. |
10 | LIU B, LIANG H, HAN Z H, et al. Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range[J]. Aerospace Science and Technology, 2022, 124: 107557. |
11 | PADMANABHAN M A, DOWELL E H. Computational study of aeroelastic response due to freeplay and flight loads[J]. AIAA Journal, 2021, 59(7): 2793-2799. |
12 | FONZI N, RICCI S, LIVNE E. Numerical and experimental investigations on freeplay-based LCO phenomena on a T-Tail model[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
13 | PANCHAL J, BENAROYA H. Review of control surface freeplay[J]. Progress in Aerospace Sciences, 2021, 127: 100729. |
14 | 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019: 8-14. |
GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: Science Press, 2019: 8-14 (in Chinese). | |
15 | 王翔宇. 非线性结构气动弹性系统的动力学与控制[D]. 北京: 北京航空航天大学, 2021. |
WANG X Y. Dynamic and control for an aeroelastic system with concentrated structural nonlinearities[D]. Beijing: Beihang University, 2021 (in Chinese). | |
16 | AJAJ R, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
17 | LIVNE E. Aircraft active flutter suppression: State of the art and technology maturation needs[J]. Journal of Aircraft, 2017, 55(1): 410-452. |
18 | 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466. |
HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466 (in Chinese). | |
19 | 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4): 1011-1033. |
YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1011-1033 (in Chinese). | |
20 | HU W, YANG Z C, GU Y S. Aeroelastic study for folding wing during the morphing process[J]. Journal of Sound and Vibration, 2016, 365: 216-229. |
21 | HU W, YANG Z C, GU Y S, et al. The nonlinear aeroelastic characteristics of a folding wing with cubic stiffness[J]. Journal of Sound and Vibration, 2017, 400: 22-39. |
22 | CHEUNG R C, WALES C, REZGUI D, et al. Modelling of folding wing-tip devices for gust loads alleviation[C]∥ 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
23 | CHEUNG R C, REZGUI D, COOPER J E, et al. Testing of folding wing-tip for gust load alleviation in high aspect ratio wing[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
24 | CONTI C, SALTARI F, MASTRODDI F, et al. Quasi-steady aeroelastic analysis of the semi-aeroelastic hinge including geometric nonlinearities[J]. Journal of Aircraft, 2021, 58(5): 1168-1178. |
25 | HE H N, TANG H, YU K P, et al. Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment[J]. Chinese Journal of Aeronautics, 2020, 33(9): 2357-2371. |
26 | LAMORTE N, FRIEDMANN P P, GLAZ B, et al. Uncertainty propagation in hypersonic aerothermoelastic analysis[J]. Journal of Aircraft, 2014, 51(1): 192-203. |
27 | 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述[J]. 航空学报, 2022, 43(10): 527350. |
YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527350 (in Chinese). | |
28 | LIU Z H, LI Z H, MA Q, et al. Thermo-mechanical coupling behavior of plate structure under re-entry aerodynamic environment[J]. International Journal of Mechanical Sciences, 2022, 218: 107066. |
29 | WU J, XU Q Y, ZHANG Z, et al. Aeroelastic characteristics of inflatable reentry vehicle in transonic and supersonic regions[J]. Computers & Fluids, 2022, 237: 105338. |
30 | HUANG C D, HUANG J C, SONG X P, et al. Three dimensional aeroelastic analyses considering free-play nonlinearity using computational fluid dynamics/computational structural dynamics coupling[J]. Journal of Sound and Vibration, 2021, 494: 115896. |
31 | 马砾, 招启军, 赵蒙蒙, 等. 基于CFD/CSD耦合方法的旋翼气动弹性载荷计算分析[J]. 航空学报, 2017, 38(6): 120762. |
MA L, ZHAO Q J, ZHAO M M, et al. Computation analyses of aeroelastic loads of rotor based on CFD/CSD coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120762 (in Chinese). | |
32 | CHEN F, LIU H, ZHANG S T. Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating[J]. Aerospace Science and Technology, 2018, 78: 620-636. |
33 | 沈恩楠, 郭同庆, 吴江鹏, 等. 高超声速全动翼面全时域耦合分析方法及应用[J]. 航空学报, 2021, 42(8): 525773. |
SHEN E N, GUO T Q, WU J P, et al. Full-time coupling method and application of a hypersonic all-movable wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525773 (in Chinese). | |
34 | 刘桐林. 世界导弹大全[M]. 北京: 军事科学出版社, 1998: 137-138. |
LIU T L. World missile encyclopedia[M]. Beijing: Military Science Press, 1998: 137-138 (in Chinese). | |
35 | 余旭东, 徐超, 郑晓亚. 飞行器结构设计[M]. 西安: 西北工业大学出版社, 2010: 178-185. |
YU X D, XU C, ZHENG X Y. Structural design for aircraft [M]. Xi'an: Northwestern Polytechnical University Press, 2010: 178-185 (in Chinese). | |
36 | 陈克, 金玲, 雷豹, 等. 基于高温合金的高速飞行器折叠舵结构设计与研究[J/OL]. 航空兵器, (2022-04-07)[2022-08-15]. . |
CHEN K, JIN L, LEI B, et al. Design and research of high-speed aircraft folding rudder structure based on high temperature alloy [J/OL]. Aero Weaponry, (2022-04-07)[2022-08-15]. (in Chinese). | |
37 | WRIGGERS P. Computational contact mechanics[M]. 2nd ed. Berlin: Springer, 2006: 109-153. |
38 | 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 666-685. |
WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 666-685 (in Chinese). | |
39 | 任浩源, 王毅, 王亮, 等. 航天飞行器折叠翼锁紧机构力学模型[J/OL].航空动力学报, (2022-07-12)[2022-08-15]. . |
REN H Y, WANG Y, WANG L, et al. Mechanical model of locking mechanisms of folding wing for spacecraft [J/OL]. Journal of Aerospace Power, (2022-07-12)[2022-08-15]. (in Chinese). | |
40 | 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004: 134-136. |
CHEN G B, ZOU C Q, YANG C. Design of aeroelasticity[M]. Beijing: Beihang University Press, 2004: 134-136 (in Chinese). | |
41 | 王乐, 王毅, 南宫自军. 活塞理论及其改进方法在超声速翼面颤振分析中的应用[J]. 导弹与航天运载技术, 2011(4): 13-17. |
WANG L, WANG Y, NANGONG Z J. Application of piston theory and its improved methods to the analysis of supersonic wing flutter[J]. Missiles and Space Vehicles, 2011(4): 13-17 (in Chinese). | |
42 | 王乐, 朱辰, 周剑波. 空气舵系统连接刚度识别及颤振模态跟踪方法[J]. 战术导弹技术, 2017(2): 52-57. |
WANG L, ZHU C, ZHOU J B. Method of joint stiffness identification and flutter mode tracking of air rudder system[J]. Tactical Missile Technology, 2017(2): 52-57 (in Chinese). | |
43 | CINOSI N, WALKER S P, BLUCK M J, et al. CFD simulation of turbulent flow in a rod bundle with spacer grids (MATIS-H) using STAR-CCM+[J]. Nuclear Engineering and Design, 2014, 279: 37-49. |
44 | FRIEDMANN P P, MCNAMARA J J, THURUTHIMATTAM B J, et al. Aeroelastic analysis of hypersonic vehicles[J]. Journal of Fluids and Structures, 2004, 19(5): 681-712. |
45 | THURUTHIMATTAM B, FRIEDMANN P, POWELL K, et al. Aeroelasticity of a generic hypersonic vehicle[C]∥ 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002. |
46 | SPAIN C, ZEILER T, BULLOCK E, et al. A flutter investigation of all-moveable NASP-like wings at hypersonic speeds[C]∥ 34th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1993. |
47 | MCNAMARA J J, FRIEDMANN P P, POWELL K G, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow[J]. AIAA Journal, 2008, 46(10): 2591-2610. |
[1] | Guoqiang LI, Kuihui SONG, Chen QIN, Guangyin ZHAO, Linxin WU, Yongdong YANG. Test on active control of airfoil dynamic stall based on trailing edge flap [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 128699-128699. |
[2] | Guiwei ZHANG, Zhaoqing LIU, Lei ZHU, Heng ZHANG, Wei TIAN, Weiguang LI, Zhichun YANG. Research progress of ground flutter simulation test technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 29229-029229. |
[3] | Cheng ZHANG, Haoyuan REN, Tailong SHI, Wendi DAI. Multidisciplinary full-time coupling methods of folding fin containing non-linear connections and their applications [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729461-729461. |
[4] | Haoyu CHEN, Binwen WANG, Qiaozhi SONG, Xiaodong LI. Thermal flutter ground simulation test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227295-227295. |
[5] | Shijie YU, Xinghua ZHOU, Rui HUANG. Parametric aeroelastic modeling and flutter characteristic analysis of variable camber wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227346-227346. |
[6] | Weijia LIU, Yingkun LI, Xiong CHEN, Chunlei LI. Panel flutter characteristics on shock wave/boundary layer interaction based on fluid⁃structure coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127085-127085. |
[7] | Ziyi WANG, Weiwei ZHANG, Lei LIU, Xiaofeng YANG. Reduced order aerothermoelastic framework suitable for complex flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126807-126807. |
[8] | WANG Xinjiang, LIU Ziqiang, GUO Li, FU Zhichao, LYU Jinan. Analysis method for flutter mode indicator based on principle of work and power [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 224920-224920. |
[9] | SHEN Ennan, GUO Tongqing, WU Jiangpeng, HU Jialiang, ZHANG Guijiang. Full-time coupling method and application of a hypersonic all-movable wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525773-525773. |
[10] | CHEN Zhiqiang, LIU Zhanhe, MIAO Nan, FENG Wei. Parametric reduced-order model of unsteady aerodynamics based on incremental learning algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 125103-125103. |
[11] | LEI Pengxuan, YU Li, CHEN Dehua, LYU Binbin. Influence of flight control law on body freedom flutter characteristics: Experimental study [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 124378-124378. |
[12] | XIE Dan, JI Chunxiu, JING Xingjian. Dynamics analysis of panel aerothermoelasticity in typical hypersonic trajectories [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 524843-524843. |
[13] | WU Taihuan, LIN Qi, HE Shengjie, LIU Ting, GAO Zhongxin, WANG Xiaoguang. Rigid body modal frequencies of two cables suspension system for full-model flutter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 123761-123761. |
[14] | LI Qiuyan, LI Gang, WEI Yangtian, RAN Yuguo, WU Bo, TAN Guanghui, LI Yan, CHEN Shi, LEI Boqi, XU Qinwei. Review of aeroelasticity design for advanced fighter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523430-523430. |
[15] | WANG Qiang, MA Zhisai, ZHANG Xin, LIU Yan, DING Qian. Dynamic characteristic analysis for a folding fin with freeplay nonlinearities based on mode synthesis method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 223507-223507. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341