[1] 高鑫, 李迎光, 刘长青, 等. 基于CAM/CNC集成的航空大型薄壁件数控加工在机刀轨调整方法[J]. 航空学报, 2015, 36(12):3980-3990. GAO X, LI Y G, LIU C Q, et al. An adjusting method of toolpath on machine for NC manufacture of large thin-walled aeronautical part based on integration of CAM and CNC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3980-3990(in Chinese). [2] 鲍岩, 董志刚, 朱祥龙, 等. 蒙皮镜像铣削支撑技术的研究现状和发展趋势[J]. 航空学报, 2018, 39(4):021817. BAO Y, DONG Z G, ZHU X L, et al. Review on support technology for mirror milling of aircraft skin[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):021817(in Chinese). [3] 刘少伟, 李迎光, 郝小忠, 等. 基于特征的蒙皮镜像铣加工残区刀轨优化方法[J]. 航空学报, 2016, 37(7):2295-2302. LIU S W, LI Y G, HAO X Z, et al. Feature-based uncut region toolpath optimization method for skin parts machined by mirror milling system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2295-2302(in Chinese). [4] 王昌瑞, 康仁科, 鲍岩, 等. 飞机蒙皮镜像铣加工稳定性分析[J]. 航空学报, 2018, 39(11):422121. WANG C R, KANG R K, BAO Y, et al. Stability analysis of aircraft skin mirror milling process[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):422121(in Chinese). [5] 王峰, 林浒, 刘峰, 等. 五轴加工奇异区域内的刀具路径优化[J]. 机械工程学报, 2011, 47(19):174-180. WANG F, LIN H, LIU F, et al. Tool path optimization of five-axis machining in singular area[J]. Journal of Mechanical Engineering, 2011, 47(19):174-180(in Chinese). [6] AFFOUARD A, DUC E, LARTIGUE C, et al. Avoiding 5-axis singularities using tool path deformation[J]. International Journal of Machine Tools and Manufacture, 2004, 44(4):415-425. [7] YANG J X, ALTINTAS Y. Generalized kinematics of five-axis serial machines with non-singular tool path generation[J]. International Journal of Machine Tools and Manufacture, 2013, 75:119-132. [8] WAN M, LIU Y, XING W J, et al. Singularity avoidance for five-axis machine tools through introducing geometrical constraints[J]. International Journal of Machine Tools and Manufacture, 2018, 127:1-13. [9] CASTAGNETTI C, DUC E, RAY P. The domain of admissible orientation concept:A new method for five-axis tool path optimisation[J]. Computer-Aided Design, 2008, 40(9):938-950. [10] LIN Z W, FU J Z, SHEN H Y, et al. Non-singular tool path planning by translating tool orientations in C-space[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1835-1848. [11] LIN Z W, FU J Z, SHEN H Y, et al. Improving machined surface texture in avoiding five-axis singularity with the acceptable-texture orientation region concept[J]. International Journal of Machine Tools and Manufacture, 2016, 108:1-12. [12] 王浏宁. 五轴数控加工奇异点问题研究[J]. 机械工程与自动化, 2012(5):122-124,129. WANG L N. Study on singular point problem in 5-axis NC machining[J]. Mechanical Engineering and Automa-tion, 2012(5):122-124,129(in Chinese). [13] TAJIMA S, SENCER B. Real-time trajectory generation for 5-axis machine tools with singularity avoidance[J]. CIRP Annals, 2020, 69(1):349-352. [14] LARTIGUE C, TOURNIER C, RITOU M, et al. High-performance NC for HSM by means of polynomial trajectories[J]. CIRP Annals, 2004, 53(1):317-320. [15] LU Y A, BI Q Z, ZHU L M. Five-axis flank milling tool path generation with smooth rotary motions[J]. Procedia CIRP, 2016, 56:161-166. [16] 周金强, 吕洪超, 胡慧莉, 等. S试件加工中奇异点优化算法的研究[J]. 机械制造, 2019, 57(2):78-81. ZHOU J Q, LV H C, HU H L, et al. Research on singularity optimization algorithm in S type specimens machining[J]. Machinery, 2019, 57(2):78-81(in Chinese). [17] 李冬冬, 张为民, 隋浩楠, 等. 五轴加工奇异问题分析与非线性误差控制[J]. 计算机集成制造系统, 2019, 25(5):1112-1118. LI D D, ZHANG W M, SUI H N, et al. Singularity analysis and non-linear error control of five-axis machining[J]. Computer Integrated Manufacturing Systems, 2019, 25(5):1112-1118(in Chinese). [18] SØRBY K. Inverse kinematics of five-axis machines near singular configurations[J]. International Journal of Machine Tools and Manufacture, 2007, 47(2):299-306. [19] MUNLIN M, MAKHANOV S S, BOHEZ E L J. Optimization of rotations of a five-axis milling machine near stationary points[J]. Computer-Aided Design, 2004, 36(12):1117-1128. [20] 王丹, 陈志同, 陈五一. 五轴加工中非线性误差的检测和处理方法[J]. 北京航空航天大学学报, 2008, 34(9):1003-1006,1091. WANG D, CHEN Z T, CHEN W Y. Detection and control of non-1inear errors in 5-axis machining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(9):1003-1006,1091(in Chinese). [21] CRIPPS R J, CROSS B, HUNT M, et al. Singularities in five-axis machining:cause, effect and avoidance[J]. International Journal of Machine Tools and Manufacture, 2017, 116:40-51. [22] 王瑞秋. 宽行数控加工理论研究及其在叶片加工中的应用[D]. 北京:北京航空航天大学, 2007:156-189. WANG R Q. Theoretical research on wide-stripe NC machining and its application in blade machining[D]. Beijing:Beihang University, 2007:156-189(in Chinese). [23] ANOTAIPAIBOON W, MAKHANOV S S, BOHEZ E L J. Optimal setup for five-axis machining[J]. International Journal of Machine Tools and Manufacture, 2006, 46(9):964-977. [24] YUAN Y, BI Q Z, ZHU L M, et al. Real-time normal measurement and error compensation of curved aircraft surface based on on-line thickness measurement[C]//ICIRA 2017:Intelligent Robotics and Applications. 2017:157-170. [25] 毕庆贞, 丁汉, 王宇晗. 复杂曲面零件五轴数控加工理论与技术[M]. 武汉:武汉理工大学出版社, 2016:15-51. BI Q Z, DING H, WANG Y H. Theory and technology of five-axis CNC machining of complex surface parts[M]. Wuhan:Wuhan University of Technology Press, 2016:15-51(in Chinese). [26] ZHANG S K, BI Q Z, JI Y L, et al. Real-time thickness compensation in mirror milling based on modified Smith predictor and disturbance observer[J]. International Journal of Machine Tools and Manufacture, 2019, 144:103427. |