[1] NAKAHASHI K. Aeronautical CFD in the age of Petaflops-scale computing:From unstructured to Cartesian meshes[J]. European Journal of Mechanics B/Fluids, 2013, 40:75-86. [2] FREMAUX M C, HALL R M. COMSAC:Computational methods for stability and control:NASA/CP-2004-213028[M]. Washington, D.C.:NASA, 2003. [3] OTTRELL J A, HUGHES T J R, BAZILEVS Y. Isogeometric Analysis:Toward Integration of CAD and FEA[M]. Wiley Publishing, 2009. [4] THOMPSON J F, THAMES F C, MASTIN C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J]. Journal of Computational Physics, 1974, 15(3):299-319. [5] LEE K. 3-D transonic flow computations using grid systems with block structure[C]//5th Computational Fluid Dynamics Conference, 1981. [6] SAWADA K, TAKANASHI S. A numerical investigation on wing/nacelle interferences of USB configuration[C]//25th AIAA Aerospace Sciences Meeting, 1987. [7] 常兴华, 马戎, 张来平. 并行化非结构重叠网格隐式装配技术[J]. 航空学报, 2018, 39(6):121780. CHANG X H, MA R, ZHANG L P. Parallel implicit hole-cutting method for unstructured overset grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121780(in Chinese). [8] NAKAHASHI K, ITO Y, TOGASHI F. Some challenges of realistic flow simulations by unstructured grid CFD[J]. International Journal for Numerical Methods in Fluids, 2010, 43(6-7):769-783. [9] CLARKE D K, HASSAN H A, SALAS M D. Euler calculations for multielement airfoils using Cartesian grids[J]. AIAA Journal, 1986, 24(3):353-358. [10] MICHELTREE R A, HASSAN H A, SALAS M D. Grid embedding technique using Cartesian grids for Euler solutions[J]. AIAA Journal, 1971, 26(6):754-756. [11] MORINISHI K. A Finite Difference Solution of the Euler Equations on Non-Body-Fitted Cartesian Grids[J]. Computers & Fluids, 1992, 21:331-344. [12] DE ZEEUW D L. A quadtree-based adaptively-refined cartesian-grid algorithm for solution of the Eulerequations[D]. Michigan:University of Michigan, 1993. [13] SANG W, YU J. Numerically analyzing more efficiently high-lift aerodynamics of wing/body model with omni-tree Cartesian grids[J]. Aerospace Science & Technology, 2011, 15(5):375-380. [14] JAE-DOO L. Development of an efficient viscous approach in a cartesian grid framework and application to rotor-fuselage interaction[D]. Georgia:Georgia Institute of Technology, 2006. [15] DADONE A, GROSSMAN B. Ghost-Cell Method with far-field coarsening and mesh adaptation for Cartesian grids[J]. Computers and Fluids, 2006, 35(7):676-687. [16] DELANAYE M, AFTOSMIS M, BERGER M, et al. Automatic hybrid-Cartesian grid generation for high-Reynolds number flows around complex geometries[C]//37th Aerospace Sciences Meeting & Exhibit, 1999. [17] CHARLTON E F. An octree solution to conservation-laws over arbitrary regions with applications to aircraft aerodynamics[D]. Michigan:University of Michigan, 1997. [18] FUJIMOTO K, FUJII K, WANG Z J. Improvements in the reliability and efficiency of body-fitted cartesian grid method:AIAA-2009-1173[R]. Reston:AIAA, 2009. [19] MATTHIAS M, LENNART S, CLAUDIA G, et al. A cut-cell method for sharp moving boundaries in Cartesian grids[J]. Computers and Fluids, 2013, 85:135-142. [20] UDAYKUMAR H S. A Sharp Interface Cartesian Grid Method for Simulating Flow with Complex Moving Boundaries[J]. Journal of Computational Physics, 2001, 174(1):345-380. [21] PESKIN C S. Flow patterns around heart valves:a numerical method[J]. Journal of Computational Physics, 1972, 10(2):252-271. [22] DADONE A, GROSSMAN B. An immersed body methodology for inviscid flows on cartesian grids:AIAA-2002-1059[R]. Reston:AIAA, 2002. [23] JAE-DOO L, RUFFIN S M. Development of a turbulent wall-function based viscous cartesian-grid methodology:AIAA-2007-1326[R]. Reston:AIAA, 2007. [24] BERNARDINI M, MODESTI D, PIROZZOLI S. On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows[J]. Computers & Fluids, 2016, 130:84-93. [25] DADONE A. Towards a ghost-cell method for analysis of viscous flows on cartesian grids:AIAA-2010-709[R]. Reston:AIAA, 2010. [26] KHOKHLOV A M. Fully threaded tree for adaptive refinement fluid dynamics simulations[J]. Journal of Computational Physics, 1997, 143(2):519-543. [27] ZHANG X Q, LAI K L. Simulation of transonic aeroservoelasticity using cartesian-grid based flow solver[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2012. [28] EMBLEMSVAG J E. A Cartesian grid method for simulation of the unsteady aerodynamics of microscale flapping flight[D]. 2005. [29] SITARAMAN J, FLOROS M, WISSINK A, et al. Parallel domain connectivity algorithm for unsteady flow computations using overlapping and adaptive grids[J]. Journal of Computational Physics, 2010, 229(12):4703-4723. [30] SITARAMAN J, FLOROS M, WISSINK A, et al. Parallel unsteady overset mesh methodology for a multi-solver paradigm with adaptive Cartesian grids[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008. [31] MA LI. A three-dimensional cartesian mesh generation algorithm based on the GPU parallel ray casting method[J]. Applied Sciences, 2019, 10(1):58. [32] BARBARA C, GABRIELE J, RUUD VAN DER P. Using OpenMP[M]. London:The MIT Press, 2008. [33] TURNER E L, HU H. A parallel CFD rotor code using OpenMP[J]. Advances in Engineering Software, 2001, 32(8):665-671. [34] WANG Z J, CHEN R F. Anisotropic solution-adaptive viscous cartesian grid method for turbulent flow simulation[J]. AIAA Journal, 2002, 40(10):1969-1978. [35] JON L B.Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9):509-517. [36] AFTOSMIS M J. Aspects of cartesian grid methods for aerodynamic flows with complex geometries[C]//28th Lecture Series in Advanced Computational Fluid Dynamics, 1997. [37] NING J, MA T, LIN G. A mesh generator for 3-D explosion simulations using the staircase boundary approach in Cartesian coordinates based on STL models[J]. Advancer in Engineering Software, 2014, 67:148-155. [38] BONET J, PERAIRE J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1):1-17. [39] SHEVTSOV M, SOUPIKOV A, KAPUSTIN A. Highly parallel fast KD-tree construction for interactive ray tracing of dynamic scenes[J]. Computer Graphics Forum, 2010, 26(3):395-404. [40] CAPIZZANO F. Automatic generation of locally refined Cartesian meshes:Data management and algorithms[J]. International Journal for Numerical Methods in Engineering, 2018, 113(5):789-813. [41] IACCARINO G, HAM F. Automatic mesh generation for LES in complex geometries[J]. CTR Annual Briefs, 2005, 20(1):19-30. [42] PARK S, SHIN H. Efficient generation of adaptive Cartesian mesh for computational fluid dynamics using GPU[J]. International Journal for Numerical Methods in Fluids, 2012, 70:1393-1404. [43] 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5):121697. TANG Z G, CHEN H, BI L, et al.Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121697(in Chinese). [44] BILLIG F S. Shock-wave shapes around spherical and cylindrical-nosed bodies[J]. Journal of Spacecraft and Rockets, 1968, 4(6):822-823. |