[1] 桂业伟, 唐伟, 杜雁霞. 临近空间高超声速飞行器热安全[M]. 北京:国防工业出版社, 2019. GUI Y W, TANG W, DU Y X. Thermal safety issues of near-space hypersonic vehicles[M]. Beijing:National Defense Industry Press, 2019(in Chinese). [2] DONOVAN A B. Vehicle level transient aircraft thermal management modeling and simulation[D]. Dayton:Wright State University, 2015. [3] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学:物理学力学天文学, 2019, 49(11):114702. GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11):114702(in Chinese). [4] FERNANDEZ VILLACE V, STEELANT J. The thermal paradox of hypersonic cruisers[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2015:3643. [5] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-04-29]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-04-29]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html (in Chinese). [6] BOSBACH J, HEIDER A, DEHNE T, er al. Evaluation of cabin displacement ventilation under flight conditions[C]//28th International Congress of the Aeronautical Sciences. Bonn:The International Council of the Aeronautical Sciences, 2012:1-10. [7] 王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10):1129-1134. WANG J, WANG P G. Integrated thermal protection and control system design methodology for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10):1129-1134(in Chinese). [8] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese). [9] 陈耀松, 单肖文, 陈沪东. 计算流体力学的新方向及其在工业上的应用[J]. 中国科学(E辑:技术科学), 2007, 37(9):1107-1116. CHEN Y S, SHAN X W, CHEN H D. New direction of computational fluid dynamics and its applications in industry[J]. Science in China (Series E:Technological Sciences), 2007, 37(9):1107-1116(in Chinese). [10] WANG X, SHANGGUAN Y Q, ZHANG H, et al. Numerical study on the near-wall characteristics of compound angled film cooling based on hybrid thermal lattice Boltzmann method[J]. Applied Thermal Engineering, 2018, 129:1670-1681. [11] 郭照立, 郑楚光. 格子Boltzmann方法的原理与应用[M]. 北京:科学出版社, 2009:46-56. GUO Z L, ZHENG C G. Theory and applications of lattice Boltzmann method[M]. Beijing:Science Press, 2009:46-56(in Chinese). [12] LI Z, YANG M, ZHANG Y W. Lattice Boltzmann method simulation of 3-D natural convection with double MRT model[J]. International Journal of Heat and Mass Transfer, 2016, 94:222-238. [13] TONG Z X, HE Y L. A unified coupling scheme between lattice Boltzmann method and finite volume method for unsteady fluid flow and heat transfer[J]. International Journal of Heat and Mass Transfer, 2015, 80:812-824. [14] 桂业伟, 刘磊, 耿湘人, 等. 气动力/热与结构多场耦合计算策略与方法研究[J]. 工程热物理学报, 2015, 36(5):1047-1051. GUI Y W, LIU L, GENG X R, et al. Study on the computation strategy and method of aero-dynamic-thermal-structural coupling problem[J]. Journal of Engineering Thermophysics, 2015, 36(5):1047-1051(in Chinese). [15] 杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析[J]. 工程热物理学报, 2014, 35(12):2461-2465. YANG X F, TANG W, GUI Y W, et al. Coupled computation of aeroheating and heat transfer for Mars pathfinder entry vehicle[J]. Journal of Engineering Thermophysics, 2014, 35(12):2461-2465(in Chinese). [16] LUIKOV A V. Conjugate convective heat transfer problems[J]. International Journal of Heat and Mass Transfer, 1974, 17(2):257-265. [17] VERSTRAETE T, SCHOLL S. Stability analysis of partitioned methods for predicting conjugate heat transfer[J]. International Journal of Heat and Mass Transfer, 2016, 101:852-869. |