[1] 熊华钢, 周贵荣, 李峭. 机载总线网络及其发展[J]. 航空学报, 2006, 27(6):1135-1144. XIONG H G, ZHOU G R, LI Q. A survey on avionics bus and network interconnections and their progress[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1135-1144(in Chinese). [2] 何锋. 机载网络技术基础[M]. 北京:国防工业出版社, 2018:382-443. HE F. Fundamentals of airborne network[M]. Beijing:National Defense Industry Press, 2018:382-443(in Chinese). [3] The ASHLEY Steering Committee. ASHLEY-The project[EB/OL]. (2018-03-18)[2020-03-05].www.ashleyproject.eu,2018.3.18. [4] FURSE C, HAUPT R. Down to the wire[aircraft wiring[J]. IEEE Spectrum, 2001, 38(2):34-39. [5] SÁMANO-ROBLES R, TOVAR E, CINTRA J, et al. Wireless avionics intra-communications:Current trends and design issues[C]//2016 Eleventh International Conference on Digital Information Management (ICDIM). Piscataway, NJ:IEEE Press, 2016:266-273. [6] TORRES O, NGUYEN T, MACHENZIE A. Enabling wireless avionics intra-communications:NASA/TM-2016-219364[R]. Washington, D.C.:NASA, 2016. [7] International Telecommunication Union. Technical characteristics and spectrum requirements of wireless avionics intra-communications systems to support their safe operation:ITU-R M.2283-0[S]. Geneva:International Telecommunication Union, 2013. [8] SAMBOU B, PEYRARD F, FRABOUL C. Scheduling avionics flows on an IEEE 802.11e HCCA and AFDX hybrid network[C]//2011 IEEE Symposium on Computers and Communications (ISCC). Piscataway:IEEE Press, 2011:205-212. [9] CAVDAR C, GERA D, HOFMANN S, et al. Demonstration of an integrated 5G network in an aircraft cabin environment[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2018:1-10. [10] 左沅君, 李峭, 熊华钢, 等. 航空电子MB-OFDM-UWB无线互连信道分析与仿真[J]. 航空学报, 2019, 40(7):322739. ZUO Y J, LI Q, XIONG H G, et al. Analysis and simulation of avionics MB-OFDM-UWB wireless interconnection channel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322739(in Chinese). [11] GAO J M, LIU Y, WANG K. EMI analysis and improvement of fuel quantity indication system on board[C]//2013 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Piscataway:IEEE Press, 2013:612-614. [12] 马振洋, 左晶, 史春蕾, 等. 机载电子设备屏蔽效能测试与优化[J]. 航空学报, 2020, 41(7):323538. MA Z Y, ZUO J, SHI C L, et al. Test and optimization of shield effectiveness for airborne electronic equipment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):323538(in Chinese). [13] GU Q J. THz interconnect:the last centimeter communication[J]. IEEE Communications Magazine, 2015, 53(4):206-215. [14] LEE Y S. Terahertz optics[M]//Principles of Terahertz Science and Technology. Boston, MA:Springer US,2008:1-56. [15] AKYILDIZ I F, JORNET J M, HAN C. Terahertz band:next frontier for wireless communications[J]. Physical Communication, 2014, 12:16-32. [16] ELAYAN H, AMIN O, SHIHADA B, et al. Terahertz band:the last piece of RF spectrum puzzle for communication systems[J]. IEEE Open Journal of the Communications Society, 2019, 1:1-32. [17] GU Q J, XU Z W, JIAN H Y, et al. CMOS THz generator with frequency selective negative resistance tank[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2):193-202. [18] JORNET J M, AKYILDIZ I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the Terahertz band[J]. IEEE Transactions on Wireless Communications, 2011, 10(10):3211-3221. [19] ABADAL S, HAN C, JORNET J M. Wave propagation and channel modeling in chip-scale wireless communications:A survey from millimeter-wave to Terahertz and optics[J]. IEEE Access, 2019, 8:278-293. [20] MOSHIRFATEMI F. Communicating at terahertz frequencies[D]. Portland:Portland State University, 2017. [21] 刘硕. 基于数字表征的编码超表面及其应用[D]. 南京:东南大学, 2017. LIU S. Digitalized coding metasurface and its applications[D]. Nanjing:Southeast University, 2017(in Chinese). [22] HEADLAND D, MONNAI Y, ABBOTT D, et al. Tutorial:Terahertz beamforming, from concepts to realizations[J]. APL Photonics, 2018, 3(5):051101. [23] CHEN Z, MA X Y, ZHANG B, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2):1-35. [24] JORNET J M, AKYILDIZ I F. Information capacity of pulse-based wireless nanosensor networks[C]//2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Piscataway:IEEE Press, 2011:80-88. [25] 刘文朋. 太赫兹无线个域网MAC协议研究[D]. 重庆:重庆邮电大学, 2015. LIU W P. A study on MAC protocols of terahertz wireless personal area networks[D]. Chongqing:Chongqing University of Posts and Telecommunications, 2015(in Chinese). [26] GHAFOOR S, BOURJNAH N et. al. MAC protocols for Terahertz communication:A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4):2236-2282. [27] MOHREHKESH S, WEIGLE M C. RIH-MAC:Receiver-initiated harvesting-aware MAC for nano works[C]//Proceedings of ACM the 1 st Annual International Conference on Nanoscale Computing and Communication. New York:ACM, 2014:1-6. [28] KOPETZ H. Real-time systems:Design principles for distributed embedded applications[M]. 2nd ed. New York:ACM, 2014:10-12,152-159,167-177. [29] SHREEDHAR M, VARGHESE G. Efficient fair queuing using deficit round-robin[J]. ACM Transactions on Networking, 1996, 4(3):375-385. [30] ZAREPOUR E, HASSAN M, CHOU C T, et al. Performance analysis of carrier-less modulation schemes for wireless nano sensor networks[C]//2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). Piscataway:IEEE Press, 2015:45-50. [31] GUPTA A. Joint symbol detection and synchronization design for ultra-high-speed wireless data networks in the Terahertz band[D]. New York:State University of New York at Buffalo, 2015. [32] 仇佩亮, 陈惠芳, 谢磊. 数字通信基础[M]. 北京:电子工业出版社, 2007:242-245. QIU P L, CHEN H F, XIE L. Fundamentals of digital communications[M]. Beijing:Publishing House of Electronics Industry, 2007:242-245(in Chinese). [33] XIA Q, HOSSAIN Z, MEDLEY M, et al. A link-layer synchronization and medium access control protocol for terahertz-band communication networks[J]. IEEE Transactions on Mobile Computing, 2021, 20(1):2-18. [34] LE BOUDEC J-Y, THIRAN P. Network calculus-A theory of deterministic queuing systems for the Internet (Version 2019-10-1)[M]. Heidelberg, Germany:Springer-Verlog, 2019. [35] CRUZ R L. A calculus for network delay. I. Network elements in isolation[J]. IEEE Transactions on Information Theory, 1991, 37(1):114-131. [36] BOYER M, STEA G, SOFACK W M. Deficit Round Robin with network calculus[C]//6th International ICST Conference on Performance Evaluation Methodologies and Tools. Piscataway:IEEE Press, 2012:138-147. [37] LEWIS J T, RUSSELL R. An introduction to large deviations for telegraphic engineers[J]. Dublin Institute for Advanced Studies, 1997:1-45. [38] WU D P, NEGI R. Effective capacity:A wireless link model for support of quality of service[J]. IEEE Transactions on Wireless Communications, 2003, 2(4):630-643. [39] FIDLER M, RIZK A. A guide to the stochastic network calculus[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1):92-105. [40] FIDLER M. WLC15-2:A network calculus approach to probabilistic quality of service analysis of fading channels[C]//IEEE Globecom 2006.Piscataway:IEEE Press, 2006:1-6. [41] GILBERT E N. Capacity of a burst-noise channel[J]. Bell System Technical Journal, 1960, 39(5):1253-1265. [42] WANDELER E. Modular performance analysis and interface-based design for embedded real-time systems[D]. Zurich:Swiss Federal Institute of Technology, 2006. |