Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (8): 328969-328969.doi: 10.7527/S1000-6893.2023.28969
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Yuedong ZHUO, Qiao LI(), Guangshan LU, Junjie WU
Received:
2023-05-06
Revised:
2023-06-06
Accepted:
2023-08-11
Online:
2024-04-25
Published:
2023-08-18
Contact:
Qiao LI
E-mail:avionics@buaa.edu.cn
Supported by:
CLC Number:
Yuedong ZHUO, Qiao LI, Guangshan LU, Junjie WU. Simulation of MIMO channel for wireless avionics intra-communications[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 328969-328969.
1 | 王昊天, 李峭, 熊华钢. 性能保证条件下航空电子高速交换机的加速方法[J]. 航空学报, 2010, 31(8): 1653-1659. |
WANG H T, LI Q, XIONG H G. Speedup scheme for avionic high-speed switch under performance guaranteed constraints[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1653-1659 (in Chinese). | |
2 | 赵长啸, 何锋, 阎芳, 等. 面向风险均衡的AFDX虚拟链路路径寻优算法[J]. 航空学报, 2018, 39(1): 321435. |
ZHAO C X, HE F, YAN F, et al. Path optimization algorithm for AFDX virtual link to balance the network risk[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 321435 (in Chinese). | |
3 | 赵露茜, 李峭, 林晚晴, 等. 基于随机网络演算的TTE网络时延分析[J]. 航空学报, 2016, 37(6): 1953-1962. |
ZHAO L X, LI Q, LIN W Q, et al. Stochastic network calculus for analysis of latency on TTEthernet network[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1953-1962 (in Chinese). | |
4 | FURSE C, HAUPT R. Down to the wire aircraft wiring[J]. IEEE Spectrum, 2001, 38(2): 34-39. |
5 | YEH Y C. Safety critical avionics for the 777 primary flight controls system[C]∥20th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2002: 1C2/1-1C2/11. |
6 | CINIBULK W. Aircraft electrical wire: Wire manufacturers perspective[EB/OL]. (2014-09-08) [2023-05-01]. . |
7 | ITU. Technical characteristics and spectrum requirements of wireless avionics intra-communications systems to support their safe operation: Report M 2283-0[S].Geneva: International Telecommunications Union, 2013. |
8 | BALTACI A, ZOPPI S, KELLERER W, et al. Evaluation of cellular technologies for high data rate WAIC applications[C]∥2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2019: 1-6. |
9 | GASKA T, WATKIN C, CHEN Y. Integrated modular avionics - past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine, 2015, 30(9): 12-23. |
10 | ZHANG C, XIAO J L, ZHAO L. Wireless asynchronous transfer mode based fly-by-wireless avionics network[C]∥2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2013: 1-16. |
11 | COLLINS J. The challenges facing US navy aircraft electrical wiring systems[C]∥Proceedings of the 9th Annual Aging Aircraft Conference, 2006. |
12 | ELGEZABAL GÓMEZ O. Fly-by-wireless: Benefits, risks and technical challenges[C]∥CANEUS Fly by Wireless Workshop. Piscataway: IEEE Press, 2010: 14-15. |
13 | SÁMANO-ROBLES R, TOVAR E, CINTRA J, et al. Wireless avionics intra-communications: Current trends and design issues[C]∥2016 Eleventh International Conference on Digital Information Management (ICDIM). Piscataway: IEEE Press, 2016: 266-273. |
14 | SURYANEGARA M, NASHIRUDIN A, RAHARYA N, et al. The compatibility model between the wireless avionics intra-communications (WAIC) and fixed services at 22-23 GHz[C]∥2015 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES). Piscataway: IEEE Press, 2015: 1-5. |
15 | ITU-R. Final acts WRC-15[C]∥World Radiocommunication Conference. Geneva: International Telecommunications Union, 2015. |
16 | 段英, 余斌, 宁春海, 等. 基于无线传感器网络的紧急保护通道重构方案研究[J]. 湖南电力, 2020, 40(4): 81-86. |
DUAN Y, YU B, NING C H, et al. Study on emergency communication channel scheme based on wireless sensor network[J]. Hunan Electric Power, 2020, 40(4): 81-86 (in Chinese). | |
17 | WATTEYNE T, HANDZISKI V, VILAJOSANA X, et al. Industrial wireless IP-based cyber–physical systems[J]. Proceedings of the IEEE, 2016, 104(5): 1025-1038. |
18 | KUSHALNAGAR N, MONTENEGRO G, SCHUMA⁃ CHER C. IPv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals[EB/OL]. (2007-08-01) [2023-05-01]. . |
19 | NIEMINEN J, SAVOLAINEN T, ISOMAKI M, et al. IPv6 over BLUETOOTH (R) low energy[EB/OL]. (2015-10-01) [2023-05-01]. . |
20 | IEEE Working Group. IEEE Std: Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 5: Enhancements for higher throughput: IEEE 802.11n-2009 [S]. Piscataway: IEEE Press, 2009. |
21 | CHAMPAIGNE K. Techniques for improving reliablility of wireless sensor networks in flight applications[C]∥Proceedings of the Caneus/NASA Fly-by-wireless Conference, 2007: 1-25. |
22 | GE Intelligent Platforms. AFDX/ARINC 664 protocol tutorial [S].Chantilly: GE Fanuc, 2007. |
23 | International SAE. Time-triggered Ethernet: AS6802 [S]. Warrendale: SAE International, 2016. |
24 | LIANG Z. Research on airborne wireless sensor network based on Wi-Fi technology[C]∥GAO H, WUN J, YIN J, et al. International Conference on Communications and Networking in China. Cham: Springer, 2022: 3-12. |
25 | FAN X H, LI S N, MA X Y, et al. Conformal multiple input multiple output antenna array for wireless avionics intra-communications system in aircraft cabin[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32(10): 32. |
26 | ITU. Technical characteristics and operational objectives for wireless avionics intra-communications (WAIC): Report M2197[S]. Geneva: International Telecommunications Union, 2010. |
27 | DANG D K, MIFDAOUI A, GAYRAUD T. Fly-By-Wireless for next generation aircraft: Challenges and potential solutions[C]∥2012 IFIP Wireless Days. Piscataway: IEEE Press, 2012: 1-8. |
28 | ITU. Compatibility analysis between wireless avionic intra-communication systems and systems in the existing services in the frequency band 4200-4400 MHz: Report M2319-0[S]. Geneva: International Telecommunications Union, 2014. |
29 | SAGHIR H, NERGUIZIAN C, LAURIN J J, et al. In-cabin wideband channel characterization for WAIC systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 516-529. |
30 | DWIVEDI A, ZOPPI S, KELLERER W, et al. Wireless avionics intra-communication (WAIC) QoS measurements of an ultra wideband (UWB) device for low-data rate transmissions[C]∥2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2020: 1-10. |
31 | SCHMIDT J F, NEUHOLD D, BETTSTETTER C, et al. Wireless connectivity in airplanes: Challenges and the case for UWB[J]. IEEE Access, 2021, 9: 52913-52925. |
32 | FUTATSUMORI S, MIYAZAKI N, HIKAGE T, et al. Interference path loss measurements of beechcraft B300 aircraft at 4 GHz wireless avionics intra-communication band[C]∥2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE. Piscataway: IEEE Press, 2020: 1-4. |
33 | FUTATSUMORI S, MIYAZAKI N, HIRAGA N, et al. Helicopter radio altimeter interference path loss measurement including adjacent 5G mobile telecommunications band[C]∥2021 IEEE Asia-Pacific Microwave Conference (APMC). Piscataway: IEEE Press, 2021: 476-478. |
34 | 左沅君, 李峭, 熊华钢, 等. 航空电子MB-OFDM-UWB无线互连信道分析与仿真[J]. 航空学报, 2019, 40(7): 322739. |
ZUO Y J, LI Q, XIONG H G, et al. Analysis and simulation of avionics MB-OFDM-UWB wireless interconnection channel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322739 (in Chinese). | |
35 | WU J J, LI Q, ZHUO Y D. Analysis of WAIC QoS guarantees using wireless LAN technology[C]∥2022 21st International Symposium on Communications and Information Technologies (ISCIT). Piscataway: IEEE Press, 2022: 76-81. |
36 | ZHANG C, YU J Z, PANG K K. Multiple access points deployment optimization in cabin wireless communications[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1220-1223. |
37 | LIU H N, ZHANG B W, LU Y. Wireless avionics intra-communication for military use based on 5G millimeter wave technology[C]∥WU M, NIU Y, GU M, et al. International Conference on Autonomous Unmanned Systems. Singapore: Springer, 2022: 1526-1536. |
38 | LIN H C, YU Q Y. Mathematical modeling and design of RIS deployment in a RIS-assisted metal cuboid for WAIC systems[J]. China Communications, 2023, 20(4): 86-101. |
39 | IEEE Working Group. TGn channel models: IEEE 80211-03/940r2 [S]. Piscataway: IEEE Press, 2004. |
40 | SALEH A A M, VALENZUELA R. A statistical model for indoor multipath propagation[J]. IEEE Journal on Selected Areas in Communications, 1987, 5(2): 128-137. |
41 | CRAMER R J M, SCHOLTZ R A, WIN M Z. Evaluation of an ultra-wide-band propagation channel[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(5): 561-570. |
42 | POON A S Y, HO M. Indoor multiple-antenna channel characterization from 2 to 8 GHz[C]∥IEEE International Conference on Communications. Piscataway: IEEE Press, 2003: 3519-3523. |
43 | GERMAN G, SPENCER Q, SWINDLEHURST L, et al. Wireless indoor channel modeling: Statistical agreement of ray tracing simulations and channel sounding measurements[C]∥2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE Press, 2002: 2501-2504. |
44 | WANG J G, MOHAN A S, AUBREY T A. Angles-of-arrival of multipath signals in indoor environments[C]∥Proceedings of Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 155-159. |
45 | CHONG C C, LAURENSON D I, MCLAUGHLIN S. Statistical characterization of the 5.2 GHz wideband directional indoor propagation channels with clustering and correlation properties[C]∥IEEE 56th Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 629-633. |
46 | KERMOAL J P, SCHUMACHER L, MOGENSEN P E, et al. Experimental investigation of correlation properties of MIMO radio channels for indoor picocell scenarios[C]∥IEEE 52nd Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 14-21. |
47 | SCHUMACHER L, PEDERSEN K I, MOGENSEN P E. From antenna spacings to theoretical capacities - guidelines for simulating MIMO systems[C]∥The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Piscataway: IEEE Press, 2002: 587-592. |
48 | SOMA P, BAUM D S, ERCEG V, et al. Analysis and modeling of multiple-input multiple-output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications[C]∥2002 IEEE International Conference on Communications. Piscataway: IEEE Press, 2002: 272-276. |
49 | CHEN Y F, BEAULIEU N C. Maximum likelihood estimation of the K factor in Ricean fading channels[J]. IEEE Communications Letters, 2005, 9(12): 1040-1042. |
50 | TSAI J A, BUEHRER R M, WOERNER B D. BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment[J]. IEEE Transactions on Wireless Communications, 2004, 3(3): 695-700. |
51 | 吴庆, 王彤, 屠晓杰, 等. 机舱内部超宽带无线信道参数仿真[J]. 计算机仿真, 2014, 31(12): 49-53, 58. |
WU Q, WANG T, TU X J, et al. Calculation of ultra wideband channel parameters in aircraft cabin[J]. Computer Simulation, 2014, 31(12): 49-53, 58 (in Chinese). | |
52 | KONG J A. Theory of electromagnetic waves[M]. New York: John Wiley & Sons,1975: 120-132. |
53 | CHIU S, CHUANG J, MICHELSON D G. Characterization of UWB channel impulse responses within the passenger cabin of a boeing 737-200 aircraft[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(3): 935-945. |
54 | BACHHUBER M. Analyse und modellierung der funkausbreitung in passagierkabinen von großraumflugzeugen[J].Asia-Pacific Journal of Chemical Engineering, 2011, 2(4):278-281. |
BACHHUBER M. Analysis and modelling of radio propagation in passenger cabins of wide-body aircraft[J]. Asia-Pacific Journal of Chemical Engineering, 2011, 2(4): 278-281 (in Deutsch). | |
55 | KYRITSI P, COX D C. Propagation characteristics of horizontally and vertically polarized electric fields in an indoor environment: Simple model and results[C]∥IEEE 54th Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 1422-1426. |
56 | NATO. Modular and open avionics architectures, Part IV: Packaging military agency for standardization: STANAG4626(draft1) [S]. Brussels: The North Atlantic Treaty Organization, 2005. |
57 | BOEING. Aircraft illustrated parts catalog 777-200/300 section 25-17, flight compartment E/E equipment centers[EB/OL]. (2022-04-28)[2023-03-01]. . |
58 | BAILY S, JACKSON A, RUSSELL J, et al. standard avionics packaging, mounting, and cooling baseline study[R]. Annapolis: ARINC Research Croporation, 1980. |
59 | 朱正吼. 碳纤维复合材料电磁特性研究[J]. 机械工程材料, 2001, 25(11): 14-16. |
ZHU Z H. Electromagnetic properties of carbon fiber composite[J]. Materials for Mechanical Engineering, 2001, 25(11): 14-16 (in Chinese). | |
60 | LOREDO S, MANTECA B, TORRES R P. Polarization diversity in indoor scenarios: An experimental study at 1.8 and 2.5 GHz[C]∥The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Piscataway: IEEE Press, 2002: 896-900. |
61 | KERMOAL J P, SCHUMACHER L, FREDERIKSEN F, et al. Polarization diversity in MIMO radio channels: Experimental validation of a stochastic model and performance assessment[C]∥IEEE 54th Vehicular Technology Conference. Piscataway: IEEE Press, 2001: 22-26. |
62 | DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979(2): 224-227. |
[1] | LIU Haining, ZHANG Shaoqing, E Siyu. Application of wireless communication of aviation airborne platform based on 5G technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 326233-326233. |
[2] | ZUO Yuanjun, LI Qiao, XIONG Huagang, LU Guangshan. Analysis and simulation of avionics MB-OFDM-UWB wireless interconnection channel [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 322739-322739. |
[3] | WANG Ting, ZHAO Yongjun. Robust reduced-dimension STAP method for airborne MIMO radar based on TRIA and SOCP [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(11): 3706-3714. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341