[1] LIU H Q, ZHAO L M, LI Y, et al. A sparse-based approach for DOA estimation and array calibration in uniform linear array[J]. IEEE Sensors Journal, 2016, 16(15):6018-6027.
[2] LIAO B, WEN J, HUANG L, et al. Direction finding with partly calibrated uniform linear arrays in nonuniform noise[J]. IEEE Sensors Journal, 2016, 16(12):4882-4890.
[3] MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968,16(2):172-175.
[4] ELIE B D, AHMAD F, MOENESS G A. Sparsity-based direction finding of coherent and uncorrelated targets using active nonuniform arrays[J]. IEEE Signal Processing Letters, 2015, 22(10):1628-1632.
[5] BHARGAV A, GUPTA N. Multiobjective genetic optimization of nonuniform linear array with low sidelobes and beamwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12(2):1547-1549.
[6] MIKAEL S, LIEVEN D L. Multiple invariance ESPRIT for nonuniform linear arrays:A coupled canonical polyadic decomposition approach[J]. IEEE Transactions on Signal Processing, 2016, 64(14):3693-3704.
[7] PILLAI S U, BARNESS Y, HABER F. A new approach to array geometry for improved spatial spectrum estimation[J]. Proceedings of the IEEE,1985, 73(10):1522-1524.
[8] PILLAI S, HABER F. Statistical analysis of a high resolution spatial spectrum estimator utilizing an augmented covariance matrix[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(11):1517-1523.
[9] HBRAMOVICH Y I, GRAY D A, GOROKHOV A Y, et al. Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. Ⅰ. Fully augmentable arrays[J]. IEEE Transactions on Signal Processing, 1998, 46(9):2458-2471.
[10] HBRAMOVICH Y I, SPENCER N K, GOROKHOV A Y. Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. Ⅱ. Partially augmentable arrays[J]. IEEE Transactions on Signal Processing, 1999, 47(6):1502-1521.
[11] MA W K, HSIEH T H, CHI C Y. DOA estimation of quasi-stationary signals via Khatri-Rao subspace[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE Computer Society, 2009:2165-2168.
[12] PAL P, VAIDYANATHAN P P. Nested arrays:A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8):4167-4181.
[13] MA X R, DONG X H, XIE Y F. An improved spatial differencing method for DOA estimation with the coexistence of uncorrelated and coherent signals[J]. IEEE Sensors Journal, 2016,16(10):3719-3723.
[14] FANG W H, LEE Y C, CHEN Y T. Maximum likelihood 2-D DOA estimation via signal separation and importance sampling[J].IEEE Antennas and Wireless Propagation Letters, 2016, 15(2):746-749.
[15] YANG X P, LI S, HU X N, et al. Improved MDL method for estimation of source number at subarray level[J]. Electronics Letters, 2016, 52(1):85-86.
[16] HAN K Y, NEHORAI A. Improved source number detection and direction estimation with nested arrays and ULAs using jackknifing[J]. IEEE Transactions on Signal Processing, 2013, 61(23):6118-6128.
[17] 齐崇英, 张永顺, 陈西宏, 等. 一种未知信源数的高分辨DOA估计算法[J].通信学报, 2006, 26(3):58-63. QI C Y, ZHANG Y S, CHEN X H, et al. Algorithm on high resolution DOA estimation under condition of unknown number of signal sources[J]. Journal on Communications,2006, 26(3):58-63(in Chinese).
[18] MANIKAS A N, TURNOR L F. Adaptive signal parameter estimation and classification technique[J].IEE Proceedings F-Radar and Signal Processing, 1991, 138(3):267-277.
[19] ZHANG Y, NG B P. MUSIC-Like DOA estimation without estimating the number of sources[J]. IEEE Transactions on Signal Processing, 2010, 58(3):1668-1676.
[20] LIU C L, VAIDYANATHAN P P. Super nested arrays:Linear sparse arrays with reduced mutual coupling-Part Ⅰ:Fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15):3997-4012.
[21] LIU C L, VAIDYANATHAN P P. Super nested arrays:Linear sparse arrays with reduced mutual coupling-Part Ⅱ:High-order extensions[J]. IEEE Transactions on Signal Processing, 2016, 65(16):4203-4217.
[22] NIU C, ZHANG Y S, GUO J R. Interlaced double-precision 2-D angle estimation algorithm using L-shaped nested arrays[J]. IEEE Signal Processing Letters, 2016, 23(4):522-526.
[23] HAN K Y, NEHORAI A. Wideband Gaussian source processing using a linear nested array[J]. IEEE Signal Processing Letters, 2013,20(11):1110-1113.
[24] CHUNG P J. A max-search approach for DOA estimation with unknown number of signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(3):612-619. |