[1] JIAO Z X, GAO J X, HUA Q, et al. The velocity synchronizing control on the electro-hydraulic load simulator[J]. Chinese Journal of Aeronautics, 2004, 17(1):39-46.
[2] 王鑫, 孙力, 闫杰. 应用复合前馈提高加载系统性能的实验研究[J]. 系统仿真学报, 2004, 16(7):1539-1541. WANG X, SUN L, YAN J. Experimental research on improving loading performance by compounding feed-forward control[J]. Journal of System Simulations, 2004, 16(7):1539-1541(in Chinese).
[3] YAO J Y, SHANG Y X, JIAO Z X. The velocity feed-forward and compensation on eliminating extraneous torque of electro-hydraulic load simulator[C]//Proceedings of the 7th International Conference on Fluid Power Transmission and Control, 2009:462-465.
[4] YAO J Y, JIAO Z X, SHANG Y X, et al. Adaptive nonlinear optimal compensation control for electro-hydraulic load simulator[J]. Chinese Journal of Aeronautics, 2010, 23(6):720-733.
[5] NAM Y, SUNG K H. Force control system design for aerodynamic load simulator[J]. Control Engineering Practice, 2002, 10(5):549-558.
[6] NAM Y. QFT force loop design for the aerodynamic load simulator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4):1384-1392.
[7] TRUONG D Q, AHN K K. Self-tuning quantitative feed-back theory for parallel force/position control of electro-hydrostatic actuators[J]. Journal of Systems and Control Engineering, 2009, 223(14):537-556.
[8] AHN K K, TRUONG D Q. Self-tuning quantitative feed-back theory for force control of an electro-hydraulic test machine[J]. Control Engineering Practice, 2009, 17(11):1291-1306.
[9] AHN K K, THAI N H, TRUONG D Q. Robust force control of a hybrid actuator using quantitative feedback theory[J]. Journal of Mechanical Science and Technology, 2007, 21(12):2048-2058.
[10] AHN K K, TRUONG D Q, THANH T Q, et al. Online self-tuning fuzzy proportional-integral-derivative control for hydraulic load simulator[J]. Journal of Systems and Control Engineering, 2008, 222(2):81-95.
[11] TRUONG D Q, AHN K K. Force control for hydraulic load simulator using self-turning grey predictor-fuzzy PID[J]. Mechatronics, 2009, 19(2):233-246.
[12] 张彪, 赵克定, 孙丰迎. 电液负载模拟器的神经网络参数辨识[J]. 航空学报, 2009, 30(2):374-379. ZHANG B, ZHAO K D, SUN F Y. Neural network parameter identification of electro-hydraulic load simulator[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2):374-379(in Chinese).
[13] 王新民, 刘卫国. 电液伺服加载的神经网络内部反馈控制[J]. 航空学报, 2007, 28(3):690-694. WANG X M, LIU W G. Neural network internal feed-back control for electro-hydraulic servo loading[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):690-694(in Chinese).
[14] MARE F C. Dynamic loading systems for ground testing of high speed aerospace actuators[J]. Aircraft Engineering and Aerospace Technology, 2006, 78(4):275-282.
[15] MERRITT H E. Hydraulic control systems[M]. New York:Wiley, 1967:56-89.
[16] YAO B, BU F P, REEDY J, et al. Adaptive robust motion control of single-rod hydraulic actuators:Theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1):79-91.
[17] XU L, YAO B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics:Theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2001, 6(4):444-452.
[18] YANG J, SU J Y, LI S H, et al. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach[J]. IEEE Transactions on Industrial Electronics, 2014, 10(1):604-614.
[19] LU L, YAO B, WANG Q F, et al. Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model[J]. Automatica, 2009, 45(12):2890-2896.
[20] YAO J Y, JIAO Z X, MA D W. Adaptive robust control of DC motors with extended state observer[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7):3630-3637.
[21] MAKKAR C, DIXON W E, SAWYER W G, et al. A new continuously differentiable friction model for control systems design[C]//Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ:IEEE Press, 2005:600-605.
[22] XIAN B, DAMSON D M, DE QUEIROZ M S, et al. A continuous asymptotic tracking control strategy for uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control, 2004, 49(7):1206-1211. |