[1] 吴子牛, 庄逢甘. 气体动力学中激波的计算[C]//钱学森技术科学思想与力学论文集. 北京:中国空气动力学会, 2001:270-276. WU Z N, ZHUANG F G. The computation of shock waves in the gas dynamics[C]//Tsien Hsue-shen Thought of Science and Technology and Mechanical Papers. Beijing:Chinese Aerodynamics Research Society, 2001:270-276(in Chinese).
[2] BONFIGLIOLI A, PACIORRI R. Hypersonic flow computations on unstructured grids:Shock-capturing vs. shock-fitting approach:AIAA-2010-4449[R]. Reston:AIAA, 2010.
[3] MORETTI G. Computation of flows with shocks[J]. Annual Review of Fluid Mechanics, 1987, 19(3):313-317.
[4] MORETTI G, ABBETT M. A time-dependent computational method for blunt body flows[J]. AIAA Journal, 1966, 4(12):2136-2141.
[5] YEE H C, WARMING R F, HARTEN A. Implicit total variation diminishing(TVD) schemes for steady-state calculations[J]. Journal of Computational Physics, 1985, 57(3):327-360.
[6] 张涵信, 沈孟育. 计算流体力学——差分格式原理和应用[M]. 北京:国防工业出版社, 2003:134-172. ZHANG H X, SHEN M Y. Computational fluid dynamics-theory and application of difference scheme[M]. Beijing:National Defence Industry Press, 2003:134-172(in Chinese).
[7] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1987, 71(2):231-303.
[8] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212.
[9] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1):22-24.
[10] 李松波. 耗散守恒格式理论[M]. 北京:高等教育出版社, 1997:208-211. LI S B. The theory of dissipative conservation scheme[M]. Beijing:Higher Education Press, 1997:208-211(in Chinese).
[11] LEE T K, ZHONG X L. Spurious numerical oscillations in simulation of supersonic flows using shock-capturing schemes[J]. AIAA Journal, 1999, 37(3):313-319.
[12] BONNHAUS D. A higher order accurate finite element method for viscous compressible flows:AIAA-1999-0780[R].Reston:AIAA, 1999.
[13] ZHONG X L. Leading-edge receptivity to free-stream disturbance waves for hypersonic flow over a parabola[J]. Journal of Fluid Mechanics, 2001, 441(1):315-367.
[14] MA Y, ZHONG X L. Receptivity of a supersonic boundary layer over a flat plate, Part 1:Wave structures and interactions[J]. Journal of Fluid Mechanics, 2003, 488(1):31-78.
[15] MA Y, ZHONG X L. Receptivity of a supersonic boundary layer over a flat plate, Part 2:Receptivity to free-stream sound[J]. Journal of Fluid Mechanics, 2003, 488(1):79-121.
[16] PRAKASH A, PARSONS N, WANG X, et al. High-order shock-fitting methods for direct numerical simulation of hypersonic flow with chemical and thermal nonequilibrium[J]. Journal of Computational Physics, 2011, 230(23):8474-8507.
[17] KOPRIVA D A. Shock-fitted multidomain solution of supersonic flows[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 175(3):383-394.
[18] PACIORRI R, BONFIGLIOLI A. Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique[J]. Journal of Computational Physics, 2011, 230(8):3155-3177.
[19] PACIORRI R, BONFIGLIOLI A. A shock-fitting technique for 2D unstructured grids[J]. Computers & Fluids, 2009, 38:715-726.
[20] BONGIGLIOLI A, GROTTADAURES M, PACIORRI R, et al. An unstructured, three-dimensional, shock-fitting solver for hypersonic Flows[J]. Computers & Fluids, 2013, 73:162-174.
[21] MORETTI G. Thirty-six years of shock fitting[J]. Computers & Fluids, 2002, 31:719-723.
[22] FARHAT C, GEUZAINE P. Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193:4073-4095.
[23] 刘君, 白晓征, 郭正. 非结构动网格计算方法[M]. 长沙:国防科技大学出版社, 2009:71-77. LIU J, BAI X Z, GUO Z. The computational method of unstructured moving grids[M]. Changsha:National University of Defence Technology Press, 2009:71-77(in Chinese).
[24] 郭正, 刘君, 瞿章华. 非结构动网格在三维可动边界问题中的应用[J]. 力学学报, 2003, 35(2):140-146. GUO Z, LIU J, QU Z H. Dynamic unstructured grid method with applications to 3D unsteady flows involving moving boundarie[J]. Acta Mechanics Sinica, 2003, 35(2):140-146(in Chinese).
[25] 刘君, 白晓征, 张涵信, 等. 关于变形网格"几何守恒律"概念的讨论[J]. 航空计算技术, 2009, 39(4):1-5. LIU J, BAI X Z, ZHANG H X, et al. Discussion about GCL for diforming grids[J]. Aeronautical Computing Technique, 2009, 39(4):1-5(in Chinese).
[26] LIU J, BAI X Z, GUO Z, et al. A new method for transferring flow information among meshes[J]. Computational Fluid Dynamics Journal, 2007, 15(4):509-514.
[27] THOMAS P D, LOMBARD C K. The geometric conservation law-a link between finite-difference and finite-volume methods of flow computation on moving grids:AIAA-1978-1208[R]. Reston:AIAA, 1978.
[28] MAVRIPLIS D J, YANG Z. Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes[J]. Journal of Computational Physics, 2006, 213(2):557-573.
[29] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[30] YAO Y, LI S G, WU Z N. Shock reflection in the presence of an upstream expansion wave and a downstream shock wave[J]. Journal of Fluid Mechanics, 2013, 735:61-90.
[31] CHEN S X. E-H type Mach configuration and its stability[J]. Communications in Mathematical Physics, 2012, 315(3):563-602. |