[1] Fang C D. Developing status of thrust vectoring control technology[J]. Aeronautical Science and Technology, 1998(2): 10-12 (in Chinese). 方昌德.飞机推力矢量技术发展综述[J]. 航空科学技术, 1998(2): 10-12.[2] Deere K A. Summary of fluidic thrust vectoring research conducted at NASA Langley Research Center, AIAA-2003-3800[R]. Reston: AIAA, 2003.[3] Bursey R, Dickinson R. Flight test results of the F-15 SMTD thrust vectoring/thrust reversing exhaust nozzle, AIAA-1990-1906[R]. Reston: AIAA, 1990.[4] Hunter C A, Deere K A. Computational investigation of fluidic counterflow thrust vectoring, AIAA-1999-2669[R]. Reston: AIAA, 1999.[5] Mason M S, Crowther W J. Fluidic thrust vectoring for low observable air vehicles, AIAA-2004-2210[R]. Reston: AIAA, 2004.[6] Bougas L, Hornung M. Propulsion system integration and thrust vectoring aspects for scaled jet UAVs[J]. CEAS Aeronautical Journal, 2013, 4(3): 327-343.[7] Giuliano V J, Wing D J. Static investigation of a fixed-aperture nozzle employing fluidic injection for multi axis thrust vector control, AIAA-1997-3149[R]. Reston: AIAA, 1997.[8] Wang Z X, Wang Y N, Li Z J, et al. Experiment on fluidic thrust-vectoring nozzle based on shock control concept[J]. Journal of Propulsion Technology, 2010, 31(6): 751-756 (in Chinese). 王占学, 王玉男, 李志杰, 等. 基于激波控制的流体推力矢量喷管试验[J]. 推进技术, 2010, 31(6): 751-756.[9] Qiao W Y, Cai Y H. A study on the two-dimensional thrust vectoring nozzle with secondary flow injection[J]. Journal of Aerospace Power, 2001, 16(3): 273-278 (in Chinese). 乔渭阳, 蔡元虎. 基于次流喷射控制推力矢量喷管的实验及数值研究[J]. 航空动力学报, 2001, 16(3): 273-278.[10] Zmijanovic V, Lago V, Palerm S, et al. Thrust shock vector control of an axisymmetric CD nozzle via transverse gas injection[C]//28th International Symposium on Shock Waves, 2012: 171-177.[11] Li W Q, Song W Y, Luo F T. Experimental and numerical investigations of shock induced thrust vectoring nozzle[J]. Journal of Aerospace Power, 2012, 27(7): 1571-1578 (in Chinese). 李卫强, 宋文艳, 罗飞腾. 激波诱导控制推力矢量喷管实验及数值计算[J]. 航空动力学报, 2012, 27(7): 1571-1578.[12] Miller D N, Yagle P J, Hamstra J W. Fluidic throat skewing for thrust vectoring in fixed geometry nozzles, AIAA-1999-0365[R]. Reston: AIAA, 1999.[13] Strykowski P J. An experimental modeling study of jet attachment during counterflow thrust vectoring, NASA-CR-204436[R]. Washington, D.C.: NASA, 1996.[14] van der Veer M R, Strykowski P J. Counterflow thrust vector control of subsonic jets-continuous and bistable regimes[J]. AIAA Journal, 1997, 13(3): 412-420.[15] Jeffrey D F. Experimental study of a nozzle using fluidic counterflow for thrust vectoring, AIAA-1998-3255[R]. Reston: AIAA, 1998.[16] Gillgrist R D, Forliti D J, Strykowski P J. On the mechanisms affecting fluidic vectoring using suction[J]. Journal of Fluids Engineering, 2007, 129(1): 91-99.[17] Yang J J, Wang M S. Numerical research on basic flow characteristics of counterflow thrust vectoring nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 769-775 (in Chinese). 杨建军, 汪明生. 逆流推力矢量喷管基本流动特征的数值研究[J]. 航空学报, 2008, 29(4): 769-775.[18] Heo J Y, Yoo K H. Fluidic thrust vector control of the supersonic jet using the co-flow injection, AIAA-2009-5174[R]. Reston: AIAA, 2009.[19] Xiao Z Y, Gu Y S, Jiang X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967-1974 (in Chinese). 肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967-1974. |