[1] Ballhaus W F, Goorjina P M. Computation of unsteady transonic flows by the indicial method[J]. AIAA Journal, 1978, 16(2): 117-124.[2] He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.[3] He L, Denton J D. Three dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blade[J]. Journal of Turbomachinery, 1994, 116(3): 469-476.[4] Sadeghi M, Liu F. Computation of mistuning effects on cascade flutter[J]. AIAA Journal, 2001, 39(1): 22-28.[5] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled methods[J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.[6] Sadeghi M, Yang S, Liu F, et al. Parallel computation of wing flutter with a coupled Navier-Stokes/CSD method, AIAA-2003-1347. Reston: AIAA, 2003.[7] Sadeghi M, Liu F. Investigation of mistuning effects on cascade flutter using a coupled method[J]. Journal of Propulsion and Power, 2007, 23(2): 266-272.[8] Kazawa J, Watanabe T. Numerical analysis toward active control of cascade flutter with smart structure, AIAA-2002-4079. Reston: AIAA, 2002.[9] Gottfried D A. Simulation of fluid-structure interaction in turbomachinery. West Lafayette: Purdue University, 2000.[10] Hu P G, Xue L P, Mao S L, et al. Material point method applied to fluid-structure interaction (FSI)/aeroelasticity problems, AIAA-2010-1464. Reston: AIAA, 2010.[11] Hu P G. Material point method with least squares technique for nonlinear aeroelasticity and fluid-structure interactions (FSI) in ASTE-P toolset, AIAA-2010-8224. Reston: AIAA, 2010.[12] Peskin C S. Flow patterns around heart values: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.[13] Zhong G H, Sun X F. A simulation strategy for an oscillating cascade in the turbomachinery using immersed boundary method[J]. AIAA Journal of Propulsion and Power, 2009, 25(2): 312-321.[14] Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow with an external force field[J]. Journal of Computational Physics, 1993, 105(2): 354-366.[15] Hu G T, Sun X F. A numerical modeling of the vortex-induced vibration of cascade in turbomachinery using immersed boundary method[J]. Journal of Thermal Science, 2011, 20: 229-237.[16] Chima R V. Explicit multi-grid algorithm for quasi-three-dimensional viscous flows in turbomachinery[J]. Journal of Propulsion and Power, 1987, 3(5): 397-405.[17] Armfield S, Street R. The fractional-step method for the Navier-Stokes equations on staggered grids: the accuracy of three variations[J]. Journal of Computational Physics, 1999, 153(2): 660-665.[18] Dutsch H, Durst F, Becker S. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360: 249-271.[19] Singh S P, Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes[J]. Journal of Fluid and Structures, 2005, 20(8): 1085-1104.[20] Piperno S. Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations[J]. International Journal for Numerical Methods in Fluids, 1997, 25(10): 1207-1226.[21] Gnesin V I, Kolodyazhnaya L V, Rzadkowski R. A numerical modeling of stator-rotor interaction in a turbine stage with oscillating blades[J]. Journal of Fluids and Structures, 2004, 19 (8): 1141-1153.[22] Denton J D. An improved time-marching method for turbomachinery flow calculation[J]. Journal for Engineering for Power, 1983, 105(3): 514-521. |