导航

ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2014, Vol. 35 ›› Issue (3): 868-877.doi: 10.7527/S1000-6893.2013.0417

• Material Engineering and Mechanical Manufacturing • Previous Articles     Next Articles

Control Technology of Composite Tape Winding Pressure

HE Xiaodong, SHI Yaoyao, ZHAO Pengbing   

  1. School of Mechatronics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2013-09-10 Revised:2013-10-13 Online:2014-03-25 Published:2013-10-21
  • Supported by:

    National Natural Science Foundation of China (51375394)

Abstract:

Pressure fluctuation will affect the density and uniformity of the winding products during a composite tape winding process, which also results in their inconsistency in interface strength and fiber volume fraction. The roundness error and installation error in the mandrel will lead to pressure fluctuation, and the gas compressibility, proportion valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise will all create nonlinear interference to winding pressure control. In view of these factors, a grey-prediction-based adaptive fuzzy PID controller is proposed. The pressure signal trend will be reflected accurately via the grey prediction of winding pressure, which provides a reliable basis for the inference of fuzzy PID control. Simultaneously, the predictive control step and the scaling factor of a self-tuning algorithm are adjusted by two other fuzzy controllers separately. Simulation analysis and experimental results show that by using the grey-prediction-based adaptive fuzzy PID control, the winding pressure overshoot decreases by 62%, and steady-state error decreases by 80%. Compared with the traditional PID control, the stability of the composite tape winding pressure control system is effectively improved by the prediction-based adaptive fuzzy PID controller.

Key words: composite materials, winding pressure, pneumatic drive, gray prediction, fuzzy control

CLC Number: