[1] Kong X W, Li B, Jin Z B, et al. Broaching performance of superalloy GH4169 based on FEM. Journal of Material Science and Technology, 2011, 27(12): 1178-1184.[2] Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook. Beijing: Standards Press of China, 2002: 232-359. (in Chinese) 《中国航空材料手册》编辑委员会.航空工程材料手册.北京: 中国标准出版社,2002: 232-359.[3] Wang Z T,Zhang S H, Cheng M, et al. Kinematics and dynamics model of GH4169 alloy for thermal deformation. Journal of Iron and Steel Research, International, 2010, 17(7): 75-78.[4] Thomas A, El-Wahabi M, Cabrera J M, et al. High temperature deformation of Inconel 718. Journal of Materials Processing Technology, 2006, 177(1-3): 469-472.[5] Zhang J M, Gao Z Y, Zhuang J Y, et al. Strain-rate hardening behavior of superalloy IN718. Journal of Materials Processing Technology, 1997,70(1-3): 252-257.[6] Ning Y Q, Fub M W, Chen X. Hot deformation behavior of GH4169 superalloy associated with stick δ phase dissolution during isothermal compression process. Materials Science and Engineering: A, 2012, 540: 164-173.[7] Li M Q, Yao X Y, Luo J, et al. Study of flow stress model of the nickel-based superalloy GH4169 at high temperature deformation. Acta Metallurgica Sinica, 2007, 43(9): 937-942. (in Chinese) 李淼泉, 姚晓燕, 罗皎, 等. 镍基高温合金GH4169高温变形流动应力模型研究. 金属学报, 2007, 43(9): 937-942.[8] Li M Q, Wang X J, Su S B, et al. Deformation behavior and processing map of the nickel-based superalloy GH4169 in the isothermal compression. China Mechanical Engineering, 2008, 19(5): 1867-1870. (in Chinese) 李淼泉, 王小津, 苏少博, 等. GH4169合金塑性变形行为及加工图.中国机械工程, 2008, 19(5): 1867-1870.[9] Du J H, Zhuang J Y, Deng Q, et al. Impact property of alloy GH4169 at low temperature. Journal of Iron and Steel Research, 1998,10(1): 31-33.(in Chinese) 杜金辉, 庄景云, 邓群, 等. GH4169合金的低温冲击性能. 钢铁研究学报, 1998, 10(1): 31-33.[10] Wei H L, Yang X G, Yu H C. Constitutive modeling and parameter identification of mechanical behavior for GH4169 alloy at high temperature. Journal of Materials Engineering, 2005(4): 42-45.(in Chinese) 魏洪亮, 杨晓光, 于慧臣. GH4169合金高温力学行为本构建模及参数识别.材料工程, 2005(4): 42-45.[11] Cao M H, Chen G S, Zhou D H, et al. Influences of deformation speed and grain size on high temperature properties and microstructures of superalloy GH4169. Journal of Iron and Steel Research, 2003, 15(7):361-365.(in Chinese) 曹美华, 陈国胜, 周奠华, 等. 变形速度及晶粒度对GH4169合金高温拉伸性能和组织的影响. 钢铁研究学报, 2003, 15(7): 361-365.[12] Guo Y B, Tang Z P, Xu S L. A critical criterion for phase transformation considering both hydrostatic pressure and deviatoric stress effects. Acta Mechanica Solida Sinica, 2004,25(4):417-422. (in Chinese) 郭扬波, 唐志平, 徐松林.一种考虑静水压力和偏应力共同作用的相变临界准则. 固体力学学报, 2004, 25(4): 417-422.[13] Pravenn K V U, Sastry G V S, Singh V. Work-hardening behavior of the Ni-Fe based superalloy IN718. Metallurgical and Materials Transactions A, 2008, 39(1):65-78.[14] Johnson G R, Cook W H. A constitutive model and data for metal subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh Symposium on Ballistics. The Hague, The Netherlands, 1983:541-547.[15] Chen G, Chen Z F, Tao J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel. Explosion and Shock Waves, 2005, 25(5): 541-546.(in Chinese) 陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证. 爆炸与冲击, 2005, 25(5): 541-546. |