[1] 宋玉泉, 管志平, 李志刚, 等. 应变速率敏感性指数的理论和测量规范[J]. 中国科学E:技术科学, 2007, 37:1363-1382. SONG Y Q, GUAN Z P, LI Z G, et al. Theoretical and measurement specifications for strain rate sensitivity indices[J]. Chinese Science E:Technical Science, 2007, 37:1363-1382(in Chinese). [2] 郑坚, 孙成友. 关于材料的应变率敏感效应[J]. 力学与实践, 1996, 18(3):18-27. ZHENG J, SUN C Y. Strain rate effect about material[J]. Mechanics and Practice, 1996, 18(3):18-27(in Chinese). [3] CAMPBELL J D, FERGUSON W G. The temperature and strain-rate dependence of the shear strength of mild steel[J]. Philosophical Magazine, 1970, 81(169):63-82. [4] LI C H. A pressure-shear experiment for studying the dynamic plastic response of metals at shear strain rate of 105 s-1[D]. Providence:Brown University, 1982:173-175. [5] LEE W S, SUE W C, LIN C F. The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy[J]. Journal of Materials Processing Technology, 2000, 100(1-3):116-122. [6] SHAW M C. Chip formation in the machining of hardened steel[J]. CIRP Annals-Manufacturing Technology, 1993, 42(1):29-33. [7] KWON K B, CHO D W, LEE S J. A fluid dynamic analysis model of the ultra-precision cutting mechanism[J]. Annals of the ClRP, 1999, 48(1):43-46. [8] KAZBAN R V. Fluid mechanics approach to machining at high speeds:Part I:Justification of potential flow models[J]. Machining Science and Technology, 2007, 11(4):475-489. [9] KAZBAN R V. Fluid mechanics approach to machining at high speeds:Part Ⅱ:A potential flow model[J]. Machining Science and Technology, 2007, 11(4):491-514. [10] 毕雪峰, 刘永贤. 基于流线理论计算正交切削中应变率和应变的方法[J]. 东北大学学报, 2009, 30(8):1185-1188. BI X F, LIU Y X. Calculating strain rate and strain during orthogonal cutting in accordance to streamline theory[J]. Journal of Northeastern University, 2009, 30(8):1185-1188(in Chinese). [11] EL-ZAHRY R M. On the hydrodynamic characteristics of the secondary shear zone in metal machining with sticking-sliding friction using the boundary layer theory[J]. Wear, 1987, 115(3):349-359. [12] ASTAKHOV V P. The assessment of cutting tool wear[J]. International Journal of Machine Tools & Manufacture, 2004, 44(6):637-647. [13] BLUMKE R, MULLER C. Microstructure-A dominating parameter for chip forming during high speed milling[J]. Materialwissenschaft Und Werkstofftechnik, 2015, 33(4):194-199. [14] FLOM D G, KOMANDURI R, LEE M. High-speed machining of metals[J]. Annual Review of Materials Science,1984, 14(1):231-278. [15] SUNDARAM N K, GUO Y, CHANDRASEK-AR S. Mesoscale folding, instability, and disruption of laminar flow in metal surface[J]. Physical Review Letters, 2012, 109:106001(1)-106001(5). [16] OXLEY P L B. Mechanics of machining:An analytical approach to assessing machinability[M]. Chichister:Ellis Horwood, 1989:242-245. [17] TOUNSI N, VINCENTI J, OTHO A, et al. From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation[J]. International Journal of Machine Tools & Manufacture,2002, 42(12):1373-1383. [18] ZHANG K G, LIU Z Q, WAN Y, et al. Fluid-like properties of chip flow in high speed metal cutting process[J]. Machining Science and Technology, 2015, 19(1):71-85. [19] 张克国, 刘战强, 万熠. 基于CFD的高速切削层流模[J]. 航空学报, 2013, 34(3):703-710. ZHANG K G, LIU Z Q, WAN Y. Laminar flow analog for high speed machining based on CFD[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):703-710(in Chinese). |