[1]Blakemore T L, Pagon W W. Pressure airships [M]. Honolulu, Hawaii: University of the Pacific, 1927.
[2]Khoury G A, Gillett J D. Airship technology [M]. New York: Cambridge University, 1999.
[3]基里林. 现代飞艇设计导论[M]. 吴飞, 王培美, 译. 北京: 国防工业出版社, 2009.
Kirilin. Introduction to modern airship design [M]. Wu Fei, Wang Peimei, translated. Beijing: National Defense Industry Press, 2009. (in Chinese)
[4]甘晓华, 郭颖. 飞艇技术概论[M]. 北京: 国防工业出版社, 2005.
Gan Xiaohua, Guo Ying. Introduction to airship technology[M]. Beijing: National Defense Industry Press, 2005. (in Chinese)
[5]Lutz T, Funk P, Jakobi A, et al. Summary of aerodynamic studies on the lotte airship[C]∥4th International Airship Convention & Exhibition. 2002.
[6]Munk M M. The aerodynamic forces on airship hulls[R]. NACA Rep. 184, 1924.
[7]Allen H J, Perkins E W. A study of effects of viscosity on flow over slender inclined bodies of revolution[R]. NACA Rep. 1048, 1950.
[8]Jones S P, DeLaurier J D. Aerodynamic estimation techniques for aerostats and airships [J]. Journal of Aircraft, 1983, 20(2): 120-126.
[9]Mueller J B, Paluszek M A, Zhao Y. Development of an aerodynamic model and control law design for a high altitude airship[R]. AIAA-2004-6479, 2004.
[10]苗景刚, 杨新, 周江华. 飞艇气动力半经验模型及其参数辨识[C]∥2007中国浮空器大会论文集. 北京: 航空工业出版社, 2007: 282-287.
Miao Jinggang, Yang Xin, Zhou Jianghua. Airship aerodynamic semi-empirical model and its parameters identification[C]∥Proceedings of 2007 China Aerostat Conference. Beijing: Aviation Industy Press, 2007: 282-287. (in Chinese)
[11]von Karman T. Calculation of the flowfield around airships[R]. NACA TM 574, 1930.
[12]Zedan M F, Dalton C. Potential flow around axisymmetric bodies: Direct and inverse problems [J]. AIAA Journal, 1978, 16(3): 242-250.
[13]Katz J, Plotkin A. Low-speed aerodynamics [M]. New York: Cambridge University Press, 2001.
[14]Thwaites B. Approximate calculation of the laminar boundary layer [J]. Aeronautical Quarterly, 1949(1): 245-280.
[15]Rott N, Crabtree L F. Simplified laminar boundary-layer calculations for bodies of revolution and for yawed wings [J]. Journal of the Aeronautical Sciences, 1952, 19(8): 533-565.
[16]Shanebrook J R, Sumner W J. Entrainment theory for axisymmetric, turbulent, incompressible boundary layer [J]. Journal of Hydronautics, 1970, 4(4): 159-160.
[17]Lutz T, Wagner S. Drag reduction and shape optimization of airship bodies[R]. AIAA-1997-1483, 1997.
[18]Rosenfeld M, Israeli M, Wolfshtein M. Numerical study of the skin friction on a spheroid at incidence[J]. AIAA Journal, 1988, 26(2): 129-136.
[19]Vasta V N, Thomas J L, Wedan B W. Navier-stokes computations of a prolate spheroid at angle of attack[J]. Journal of Aircraft, 1989, 26(11): 986-993.
[20]Wong T C, Kandil O A, Liu C H. Navier-Stokes computations of separated vortical flows past prolate spheroid at incidence[C]∥27th AIAA Aerospace Sciences Meeting & Exhibit. 1989.
[21]Constantinescu G S, Pasinato H, Wang Y Q, et al. Numerical investigation of flow past a prolate spheroid[J]. Journal of Fluids Engineering, 2002, 124: 904-910.
[22]Alpman E, Long L N. Separated turbulent flow simulations using a Reynolds stress model and unstructured meshes[C]∥43rd AIAA Aerospace Sciences Meeting & Exhibit. 2005.
[23]Xiao Z X, Chen H X, Zhang Y F, et al. Prediction for separation flows around a 6∶1 prolate spheroid using hybrid RANS/LES methods[C]∥44th AIAA Aerospace Sciences Meeting & Exhibit. 2006.
[24]Tezuka A, Suzuki K. Three-dimensional global linear stability analysis of flow around a spheroid [J]. AIAA Journal, 2006, 44(8): 1697-1708.
[25]Costis C E, Hoang N T, Telionis D P. Laminar separation flow over a prolate spheroid [J]. Journal of Aircraft, 1989, 26(9): 810-816.
[26]Barber K M, Simpson R L. Mean velocity and turbulence measurements of flow around a 6∶1 prolate spheroid[C]∥29th AIAA Aerospace Sciences Meeting & Exhibit.1991.
[27]Ahn S, Simpson R L. Cross-flow separation on a prolate spheroid at angles of attack[C]∥30th AIAA Aerospace Sciences Meeting & Exhibit. 1992.
[28]Chesnakas C J, Simpson R L. A detailed investigation of the 3-D separation about a 6∶1 prolate spheroid at angle of attack[C]∥34th AIAA Aerospace Sciences Meeting & Exhibit. 1996.
[29]Chesnakas C J, Simpson R L. Detailed investigation of the three-dimensional separation about a 6∶1 prolate spheroid[J]. AIAA Journal, 1997, 35(6): 990-999.
[30]Goody M C, Simpson R L, Chesnakas C J. Separated flow surface pressure fluctuations and pressure-velocity correlations on prolate spheroid[J]. AIAA Journal, 2000, 38(2): 266-274.
[31]Funk P, Lutz T, Wagner S. Experimental investigations on hull-fin interferences of the LOTTE airship[J]. Aerospace Science and Technology, 2003, 7: 603-610.
[32]Paik J, Escauriaza C, Sotiropoulos F. On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction[J]. Physics of Fluids, 2007, 19: 045107.
[33]刘丹, 王晓亮, 单雪雄. 平流层飞艇的附加质量及其对飞艇运动的影响[J]. 计算机仿真, 2006, 23(6): 52-56.
Liu Dan, Wang Xiaoliang, Shan Xuexiong. Added mass to stratospheric airship and its effect on motion[J]. Computer Simulation, 2006, 23(6): 52-56. (in Chinese)
[34]Sahin I, Crane J, Watson K. Added mass calculation by a low-order panel method[C]∥31st AIAA Aerospace Sciences Meeting & Exhibit. 1993.
[35]Tuckerman L B. Inertia factors of ellipsoids for use in airship design[R]. NACA Rep. 210, 1925.
[36]Bessert N, Frederich O. Nonlinear airship aeroelasticity[J]. Journal of Fluids and Structures, 2005, 21: 731-742.
[37]Omari K E, Schall E, Koobus B, et al. Fluid-structure coupling of a turbulent flow and a generic blimp structure at high angle of attack[C]∥Monografías del Seminario Matemático García de Galdeano. 2006, 33: 369-376.
[38]Liu J M, Lu C J, Xue L P. Investigation of airship aeroelasticity using fluid-structure interaction[J]. Journal of Hydrodynamics, 2008, 20(2): 164-171.
[39]Stefan K. Thermal effects on a high altitude airship[R]. AIAA-1983-1984, 1983.
[40]Kim S M, Park H S, Roh T S, et al. A study on thermal characteristics of stratospheric airship considering radiation heat transfer[C]∥Proceedings of Asian Joint Conference on Propulsion and Power. 2006.
[41]Harada K, Eguchi K, Sano M, et al. Experimental study of thermal modeling for stratospheric platform airships[C]∥AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Tech. 2003.
[42]Henze M, Weigand B. Natural convection inside airships[C]∥9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2006.
[43]DeLaurier J D, Hui K C K. Airship survivability in atmospheric turbulence[R]. AIAA-1981-1323, 1981.
[44]Lee S, Bang H. Three-dimensional ascent trajectory optimization for stratospheric airship platforms in the jet stream[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1341-1352.
[45]Hoerner S F. Fluid dynamic drag: hoerner fluid dynamics[M]. 1965.
[46]Wardlaw A B. High-angle-of-attack missile aerodynamics: missile aerodynamics[R]. AGARD Lecture Series 98, 1979 (5-1), (5-53).
[47]Oberkampf W L, Watson L E. Incompressible potential flow solutions for arbitrary bodies of revolution[J]. AIAA Journal, 1974, 12(3): 409-411.
[48]Karamacheti K. Principles of ideal-fluid aerodynamics[M]. New York: Wiley & Sons, 1966.
[49]Nejati V, Matsuuchi K. Aerodynamics design and genetic algorithms for optimization of airship bodies[J]. JSME International Journal, 2003, 46(4): 610-617.
[50]Tseng W W, Lorens R E. Application of the panel method to airships[R]. AIAA-1983-1978,1983.
[51]Wong K Y, Zhiyung L, DeLaurier J D. An application of source-panel and vortex methods for aerodynamic solutions of airship configurations[R]. AIAA-1985-0874, 1985.
[52]Jakobi A, Funk P,Lutz T,et al. Modelling of airship wakes applying higher order panel element[C]∥Proceedings of the 14th AIAA Lighter-Than-Air Technical Committee Convention and Exhibition. 2001.
[53]Wang X L, Shan X X. Shape optimization of stratosphere airship[J]. Journal of Aircraft, 2006, 43(1): 283-286.
[54]Nakayama A, Patel V C. Calculation of the viscous resistance of bodies of revolution[J]. Journal of Hydronautics, 1974, 8(4): 154-162.
[55]Zedan M F, Seif A A, Al-Moufadi S. Drag reduction of airplane fuselages through shaping by the inverse method[J]. Journal of Aircraft, 1994, 31(2): 279-287.
[56]Goldschmied F R. Integrated hull design, boundary-layer control, and propulsion of submerged bodies[J]. Journal of Hydronautics, 1967, 1(1): 2-11.
[57]Pake F A, Piptone S J. Boundary layer control for airships[R]. BT-2548. 03, 1975.
[58]Kim S E, Rhee S H, Cokljat D. Application of modern turbulence models to vortical flow around a 6∶1 prolate spheroid at incidence[C]∥41st AIAA Aerospace Sciences Meeting & Exhibit. 2003.
[59]Su W H, Tao B, Xu L. Three-dimensional separated flow over a prolate spheroid[J]. AIAA Journal, 1993, 31(11): 2175-2176.
[60]Lutz T, Funk P, Jakobi A, et al. Aerodynamic investigations on inclined airship bodies[C]∥Proceedings of the International Airship Convention and Exhibition. 1998.
[61]Okuyama M, Shibata M, Yokokawa A, et al. Study of propulsion performance and propeller characteristics for stratospheric platform airship[R]. JAXA-RR-05-056, 2006.
[62]Lutz T, Leinhos D, Wagner S. Theoretical investigations of the flowfield of airships with a stern propeller[C]∥International Airship Convention and Exhibition. 1996.
[63]刘建闽, 薛雷平, 鲁传敬. 平流层飞艇绕流场与柔性变形的数值模拟[J]. 力学季刊, 2006, 27(3): 440-448.
Liu Jianmin, Xue Leiping, Lu Chuanjing. Coupling computation of ambient flow and deformation of elastic membrane body[J]. Chinese Quarterly of Mechanics, 2006, 27(3): 440-448. (in Chinese)
[64]吴子牛, 王兵, 周睿, 等. 空气动力学[M]. 北京: 清华大学出版社,2008.
Wu Ziniu, Wang Bing, Zhou Rui, et al. Aerodynamics[M]. Beijing: Tsinghua University Press, 2008. (in Chinese)
[65]秦朝中, 杨向龙, 梁宗宪, 等. 充气囊体材料撕裂及破裂后流场特性研究[J]. 中国科学技术大学学报, 2007, 37(10): 1280-1285.
Qin Chaozhong, Yang Xianglong, Liang Zongxian, et al. An investigation on the tearing behavior of ballonet material and after-burst flow of an airship[J]. Journal of University of Science and Technology of China, 2007, 37(10): 1280-1285. (in Chinese)
[66]唐逊, 赵攀峰, 秦朝中. 高空飞艇的流固耦合数值研究[J]. 航空科学技术, 2008(4): 18-22.
Tang Xun, Zhao Panfeng, Qin Chaozhong. A numerical investigation on the fluid-structure interaction of high-altitute airship[J]. Aeronautical Science and Technology, 2008(4): 18-22. (in Chinese) |