航空学报 > 2025, Vol. 46 Issue (24): 432516-432516   doi: 10.7527/S1000-6893.2025.32516

空天装备数字试验验证理论与关键技术

陶飞1,2,3,4(), 张贺1, 刘蔚然1, 张辰源2, 魏宇鹏1, 易黎1,5, 邹孝付6   

  1. 1.北京航空航天大学 国际前沿交叉科学研究院 数字孪生国际研究中心,北京 100191
    2.北京航空航天大学 自动化科学与电气工程学院,北京 100191
    3.北京航空航天大学 虚拟现实技术与系统全国重点实验室,北京 100191
    4.天目山实验室,杭州 311115
    5.北京航空航天大学 软件学院,北京 100191
    6.北京航空航天大学 人工智能学院,北京 100191
  • 收稿日期:2025-07-05 修回日期:2025-07-14 接受日期:2025-08-01 出版日期:2025-12-25 发布日期:2025-08-18
  • 通讯作者: 陶飞 E-mail:ftao@buaa.edu.cn
  • 基金资助:
    北京市自然科学基金(24JL002);国家自然科学基金(52275471);科学探索奖;北京高等学校卓越青年科学家计划

Theories and key technologies of digital experiment and validation for aerospace equipment

Fei TAO1,2,3,4(), He ZHANG1, Weiran LIU1, Chenyuan ZHANG2, Yupeng WEI1, Li YI1,5, Xiaofu ZOU6   

  1. 1.Digital Twin International Research Center,International Institute for Interdisciplinary and Frontiers,Beihang University,Beijing 100191,China
    2.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    3.State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,Beijing 100191,China
    4.Tianmushan Laboratory,Hangzhou 311115,China
    5.School of Software,Beihang University,Beijing 100191,China
    6.School of Artificial Intelligence,Beihang University,Beijing 100191,China
  • Received:2025-07-05 Revised:2025-07-14 Accepted:2025-08-01 Online:2025-12-25 Published:2025-08-18
  • Contact: Fei TAO E-mail:ftao@buaa.edu.cn
  • Supported by:
    Beijing Natural Science Foundation(24JL002);National Natural Science Foundation of China(52275471);the New Cornerstone Science Foundation through the XPLORER PRIZE;Beijing Outstanding Young Scientist Project

摘要:

空天装备是国家战略安全的关键,试验验证是确保其性能的核心手段。随着空天装备系统复杂性的急剧增长与多域协同运行需求的深化,传统实物试验验证在时效性、经济性、全面性等方面面临系列挑战,亟需通过数智化技术重构试验验证范式以支撑空天装备高质量发展。基于作者团队前期提出的数字孪生五维模型、数字试验测试验证理论与标准体系:分析了空天装备“四性四化”试验验证需求,指出了空天装备数字试验验证是未来发展趋势;提出了空天装备数字试验验证“以数辅实、以数补实、数实融合、以数领实、以数替实”五级成熟度模型;提出了“数演-实验-真用”数实融合试验验证原理架构,设计了空天装备数字试验验证通用实施流程,构建了空天装备数字试验验证关键技术体系;从总体布局、前沿技术、行业生态、标准规范等角度对空天装备数字试验验证的未来发展进行了展望。期望相关工作为全面提升空天装备试验验证能力,达到“结果准、效率高、内容全、成本低、风险小”的理想目标提供参考,助力未来空天装备的数字化、网络化、智能化、自主化、体系化发展。

关键词: 数字试验验证, 数实融合, 空天装备, 原理架构, 数字工程

Abstract:

Aerospace equipment includes a wide range of products, including aircraft and spacecraft components, as well as the machinery, instruments, and systems used in both aeronautics and astronautics. This equipment plays a critical role in exploration and research, where experimentation and validation are essential to ensuring its performance. Traditionally, experimentation and validation have relied heavily on physical methods. However, as aerospace systems become more complex and the demand for multi-domain collaborative operations increases, traditional physical methods have proven to be time-consuming, costly, and limited in scope. To address these challenges, digital technologies have attracted growing attention for their potential to transform the traditional experimentation and validation paradigm from physical to digital methods. In this context, building upon the authors’ previously proposed five-dimensional digital twin model and the associated theories and standards for digital experimentation and validation, this work first discusses the primary requirements for the experimentation and validation of aerospace equipment, where digital experiment and validation methods are identified as the future trend. Second, a five-level maturity model for the digital experimentation and validation of aerospace equipment is proposed. Third, a generic workflow for the implementation of digital experimentation and validation is presented; a series of enabling technologies that support this transformation are introduced; and a reference architecture for fusing digital and physical experimentation and validation is also proposed. Lastly, the current challenges and future prospects in this field are outlined from the perspectives of overall layout, cutting-edge technologies, industrial ecology, and standardization. It is expected that this work can serve as a valuable reference for enhancing aerospace experiment and validation capabilities, enabling a more accurate, efficient, comprehensive, cost-effective, and lower-risk experiment and validation process for aerospace equipment; and support the future development of aerospace equipment toward digitalization, networking, intelligence, autonomy, and systematization.

Key words: digital experiment and validation, digital-physical fusion, aerospace equipment, reference architecture, digital engineering

中图分类号: