航空学报 > 2025, Vol. 46 Issue (21): 532386-532386   doi: 10.7527/S1000-6893.2025.32386

中国飞机强度研究所建所 60 周年专刊

广义周期点阵结构的高阶渐近展开分析方法

徐仕杰1,2, 张卫红1()   

  1. 1.西北工业大学 机电学院,西安 710072
    2.太行国家实验室,成都 610200
  • 收稿日期:2025-06-09 修回日期:2025-06-23 接受日期:2025-07-14 出版日期:2025-08-12 发布日期:2025-07-30
  • 通讯作者: 张卫红 E-mail:zhangwh@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(12032018);国家自然科学基金(12220101002)

A high-order asymptotic expansion analysis method for generalized periodic lattice structures

Shijie XU1,2, Weihong ZHANG1()   

  1. 1.School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an 710072,China
    2.TaiHang National Laboratory,Chengdu 610200,China
  • Received:2025-06-09 Revised:2025-06-23 Accepted:2025-07-14 Online:2025-08-12 Published:2025-07-30
  • Contact: Weihong ZHANG E-mail:zhangwh@nwpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12032018)

摘要:

针对广义周期多尺度点阵结构的高精度分析计算需求,提出了一种高阶渐近展开分析改进方法。该方法首先通过映射变换,将广义周期点阵单胞微结构均匀化问题转换为正方形单胞微结构的经典周期均匀化问题,再通过能量法计算单胞的等效性能,进一步采用有限元方法实现位移场、应变场及应力场的高阶渐近展开分析计算。通过典型数值算例,分析比较了高阶渐近展开分析方法的计算精度。计算结果表明,该方法对于静力学、动力学固有频率等问题均具有良好的计算精度,为广义周期点阵结构的高性能轻量化结构设计提供了有效支撑。

关键词: 广义周期点阵结构, 多尺度分析, 均匀化, 渐近展开分析, 映射方法, 高阶近似

Abstract:

This paper proposes a novel high-order asymptotic expansion analysis method for generalized periodic lattice structures, aimed at accurately predicting their physical and mechanical behaviors and equivalent performances. The proposed method converts the homogenization problem of generalized periodic lattice structures into the classical two-scale homogenization problem for a cubic unit cell, thereby elucidating the intrinsic mapping mechanisms of the generalized two-scale homogenization approach. This conversion clarifies the fundamental properties of the equivalent performance of generalized periodic two-scale homogenization, substantially reducing the computational and programming complexities involved. By employing typical numerical examples, this paper compares the outcomes from the proposed mapping method with those derived from classical periodic two-scale homogenization and fine-scale finite element methods. The results affirm the universality and effectiveness of the proposed method, which exhibits high computational precision for addressing both static and dynamic issues, such as natural frequency calculations, thus providing strong theoretical support and practical pathways for designing high-performance, lightweight structures in generalized periodic lattice configurations.

Key words: generalized periodic lattice structures, multi-scale analysis, homogenization, asymptotic expansion analysis, mapping method, high-order approximation

中图分类号: