| [1] |
COMPTON B G, LEWIS J A. 3D printing: 3D-printing of lightweight cellular composites (adv. mater. 34/2014)[J]. Advanced Materials, 2014, 26(34): 6043.
|
| [2] |
Intralattice[EB/OL]. (2023-03-03)[2024-08-12]. .
|
| [3] |
LIU Z Q, MEYERS M A, ZHANG Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications[J]. Progress in Materials Science, 2017, 88: 467-498.
|
| [4] |
ZHAO Z L, ZHOU S W, FENG X Q, et al. Morphological optimization of scorpion telson[J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103773.
|
| [5] |
OSORIO L, TRUJILLO E, VAN VUURE A W, et al. Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2011, 30(5): 396-408.
|
| [6] |
CHEN W J, ZHENG X N, LIU S T. Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing[J]. Materials, 2018, 11(11): 2073.
|
| [7] |
ZHAO Z L, ZHOU S W, FENG X Q, et al. On the internal architecture of emergent plants[J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 224-239.
|
| [8] |
STROMBERG L L, BEGHINI A, BAKER W F, et al. Application of layout and topology optimization using pattern gradation for the conceptual design of buildings[J]. Structural and Multidisciplinary Optimization, 2011, 43(2): 165-180.
|
| [9] |
YE Q, GUO Y, CHEN S K, et al. Topology optimization of conformal structures on manifolds using extended level set methods (X-LSM) and conformal geometry theory[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 164-185.
|
| [10] |
TANG Y L, KURTZ A, ZHAO Y F. Bidirectional Evolutionary Structural Optimization (BESO) based design method for lattice structure to be fabricated by additive manufacturing[J]. Computer-Aided Design, 2015, 69: 91-101.
|
| [11] |
NGUYEN J, PARK S I, ROSEN D. Heuristic optimization method for cellular structure design of light weight components[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(6): 1071-1078.
|
| [12] |
TANG Y L, DONG G Y, ZHAO Y F. A hybrid geometric modeling method for lattice structures fabricated by additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9): 4011-4030.
|
| [13] |
DEDÈ L, BORDEN M J, HUGHES T J R. Isogeometric analysis for topology optimization with a phase field model[J]. Archives of Computational Methods in Engineering, 2012, 19(3): 427-465.
|
| [14] |
MOSES E, FUCHS M B, RYVKIN M. Topological design of modular structures under arbitrary loading[J]. Structural and Multidisciplinary Optimization, 2002, 24(6): 407-417.
|
| [15] |
GAO T, ZHANG W H. Topology optimization involving thermo-elastic stress loads[J]. Structural and Multidisciplinary Optimization, 2010, 42(5): 725-738.
|
| [16] |
MAHARAJ Y, JAMES K A. Metamaterial topology optimization of nonpneumatic tires with stress and buckling constraints[J]. International Journal for Numerical Methods in Engineering, 2020, 121(7): 1410-1439.
|
| [17] |
ZUO Z H, XIE Y M, HUANG X D. Optimal topological design of periodic structures for natural frequencies[J]. Journal of Structural Engineering, 2011, 137(10): 1229-1240.
|
| [18] |
XU Z, ZHANG W H, ZHOU Y, et al. Multiscale topology optimization using feature-driven method[J]. Chinese Journal of Aeronautics, 2020, 33(2): 621-633.
|
| [19] |
WANG C, ZHU J H, ZHANG W H, et al. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 35-50.
|
| [20] |
ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing: Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1): 91-110.
|
| [21] |
BABUŠKA I. Homogenization approach in engineering[C]∥Computing Methods in Applied Sciences and Engineering. Berlin: Springer, 1976: 137-153.
|
| [22] |
KESAVAN S. Homogenization of elliptic eigenvalue problems: Part 1[J]. Applied Mathematics and Optimization, 1979, 5(1): 153-167.
|
| [23] |
KESAVAN S. Homogenization of elliptic eigenvalue problems: Part 2[J]. Applied Mathematics and Optimization, 1979, 5(1): 197-216.
|
| [24] |
BENSOUSSAN A, LIONS J L, PAPANICOLAOU G. Asymptotic analysis for periodic structures[M]. Providence, R.I. American Mathematical Society, 2011
|
| [25] |
BRIANE M. Three models of non periodic fibrous materials obtained by homogenization[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 1993, 27(6): 759-775.
|
| [26] |
TSALIS D, BAXEVANIS T, CHATZIGEORGIOU G, et al. Homogenization of elastoplastic composites with generalized periodicity in the microstructure[J]. International Journal of Plasticity, 2013, 51: 161-187.
|
| [27] |
TSALIS D, CHATZIGEORGIOU G, CHARALAMBAKIS N. Homogenization of structures with generalized periodicity[J]. Composites Part B: Engineering, 2012, 43(6): 2495-2512.
|
| [28] |
徐仕杰, 张卫红. 广义周期点阵结构的等效性能均匀化映射方法研究[J]. 中国科学(技术科学), 2024, 54(6): 1036-1056.
|
|
XU S J, ZHANG W H. Research on equivalent performance homogenization mapping method of generalized periodic lattice structure[J]. SCIENTIA SINICA Technologica, 2024, 54(6): 1036-1056 (in Chinese).
|
| [29] |
XU S J, ZHANG W H. Energy-based homogenization method for lattice structures with generalized periodicity[J]. Computers & Structures, 2024, 302: 107478.
|
| [30] |
DONG H, ZHENG X J, CUI J Z, et al. Multi-scale computational method for dynamic thermo-mechanical performance of heterogeneous shell structures with orthogonal periodic configurations[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 143-180.
|
| [31] |
YANG Z Q, LIU Y Z, SUN Y, et al. A second-order reduced multiscale method for nonlinear shell structures with orthogonal periodic configurations[J]. International Journal for Numerical Methods in Engineering, 2022, 123(1): 128-157.
|
| [32] |
TOMPSON A F B. Numerical simulation of chemical migration in physically and chemically heterogeneous porous media[J]. Water Resources Research, 1993, 29(11): 3709-3726.
|
| [33] |
HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1): 169-189.
|
| [34] |
CAO L Q, CUI J Z. Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains[J]. Numerische Mathematik, 2004, 96(3): 525-581.
|
| [35] |
CAO L Q. Iterated two-scale asymptotic method and numerical algorithm for the elastic structures of composite materials[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(27-29): 2899-2926.
|
| [36] |
OLEINIK O A, SHAMAEV A S, YOSIFIAN G A. Mathematical problems in elasticity and homogenization[M]. Amsterdam: Elsevier Science Publishers B.V., 2012.
|
| [37] |
GHOSH S, LEE K, MOORTHY S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 132(1-2): 63-116.
|
| [38] |
SCHRÖDER J. A numerical two-scale homogenization scheme: The FE2-method[M]∥Plasticity and Beyond. Vienna: Springer Vienna, 2014: 1-64.
|
| [39] |
RAO Y P, XIANG M Z, CUI J Z. A strain gradient brittle fracture model based on two-scale asymptotic analysis[J]. Journal of the Mechanics and Physics of Solids, 2022, 159: 104752.
|
| [40] |
曹礼群, 崔俊芝, 王崇愚. 非均质材料多尺度物理问题与数学方法[C]∥中国科学院技术科学论坛学术报告会. 2002.
|
|
CAO L Q, CUI J Z, WANG C Y. Multi-scale physical problems and mathematical methods for heterogeneous materials[C]∥Academic Report Meeting of the Technology Science Forum of China Academy of Sciences. 2002 (in Chinese).
|
| [41] |
张卫红, 徐仕杰, 朱继宏. 循环对称结构的多尺度拓扑优化方法[J]. 计算力学学报, 2021, 11(4): 512-522.
|
|
ZHANG W H, XU S J, ZHU J H. Multi-scale topology optimization method for cyclic symmetric structures[J]. Chinese Journal of Computational Mechanics, 2021, 11(4): 512-522 (in Chinese).
|