收稿日期:2024-08-02
修回日期:2024-11-20
接受日期:2025-03-21
出版日期:2025-04-01
发布日期:2025-03-31
通讯作者:
张安平
E-mail:zapnuaa@163.com
Received:2024-08-02
Revised:2024-11-20
Accepted:2025-03-21
Online:2025-04-01
Published:2025-03-31
Contact:
Anping ZHANG
E-mail:zapnuaa@163.com
摘要:
以应对高端战争为出发点,研究了适合中国现阶段发展的低成本无人机(UAV)蜂群类型及其起飞方式,为提升当前的无人机蜂群作战能力提供了一些思路。介绍了无人机蜂群必须具备的远距离作战能力,对美国若干低成本无人机的成本情况以及无人机动力装置的技术现状进行了分析,比较了可用于无人机蜂群的3种起飞方式,分析了国内外多机连续箱式发射系统在关键技术中存在的差距,并结合国外无人机实例思考与借鉴,最后建议国内以起飞质量超过150 kg、机翼为折叠翼的中型固定翼无人机为无人机蜂群的飞行器平台,通过解决螺旋桨与活塞发动机的箱外离合、电机驱动折叠机翼的展开等关键技术,提高用于无人机蜂群起飞的多机连续箱式发射系统的发射效率。
中图分类号:
张安平, 董昊. 应对高端战争的无人机蜂群及其起飞方式[J]. 航空学报, 2025, 46(22): 331034.
Anping ZHANG, Hao DONG. UAV swarms and their takeoff method for high-end warfare[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(22): 331034.
表 1
9种中型固定翼无人机的主要技术参数及动力装置
| 型号 | 起飞质量/kg | 任务载荷/kg | 机长/m | 翼展/m | 机高/m | 最大速度/ (km·h-1) | 续航时间/h | 升限/m | 航程/km | 动力装置 |
|---|---|---|---|---|---|---|---|---|---|---|
| DAR | 120 | 30 | 2.30 | 2.00 | 0.36 | 250 | >3 | 3 000 | 500 | 1台20.5 kW活塞发动机,2叶推进螺旋桨 |
| 台风 | 160 | 50 | 2.08 | 2.26 | 1.10 | 200 | 4 | 4 000 | >500 | 1台32.1 kW活塞发动机,4叶推进螺旋桨 |
| 百灵鸟 | 120 | 25 | 2.43 | 2.10 | 0.55 | 222 | 4 | 4 575 | 400 | 1台28.3 kW活塞发动机,2叶推进螺旋桨 |
| 哈比 | 135 | 32 | 2.70 | 2.10 | 0.36 | 185 | 4 | 3 000 | 500 | 1台28.3 kW活塞发动机,2叶推进螺旋桨 |
| 哈洛普 | 160 | 70 | 2.50 | 3.00 | 0.50 | 400 | 9 | 4 600 | 1 000 | 1台活塞发动机,2叶推进螺旋桨 |
| JWS-01 | 135 | 2.50 | 2.20 | 220 | >4 | 500 | 1台活塞发动机,2叶推进螺旋桨 | |||
| FL300B | 150 | 180 | 8 | 1台活塞发动机,2叶推进螺旋桨 | ||||||
| 剑翔 | 150 | 2.2 | 2.0 | 0.4 | 250 | 5 | 3 000 | 1 000 | 1台29.4 kW活塞发动机,2叶推进螺旋桨 | |
| 见证者-136 | 200 | 36 | 3.50 | 2.50 | 185 | 11.5 | 4 000 | >1 000 | 1台37.3 kW活塞发动机,2叶推进螺旋桨 |
| [1] | DAGGETT S. Quadrennial defense review 2010: Overview and implications for national security planning[R]. Washington, D.C.: Congressional Research Service; 2010. |
| [2] | 张昌芳, 朱启超, 匡兴华. 高端战争引领下美军装备和技术发展[J]. 装备学院学报, 2014, 25(3): 31-34. |
| ZHANG C F, ZHU Q C, KUANG X H. The development of the US equipments and technologies directed by high end war[J]. Journal of Equipment Academy, 2014, 25(3): 31-34 (in Chinese). | |
| [3] | 中国指挥与控制学会. 高端战争的发展历程、基本特点与发展趋势[EB/OL]. (2024-10-21)[2025-01-17]. . |
| Chinese Institute of Command and Control. The evolution, fundamental characteristics, and development trends of high-end warfare[EB/OL]. (2024-10-21)[2025-01-17]. (in Chinese). | |
| [4] | 徐万胜. 大国竞争背景下美国高端常规战争能力建设评析[J]. 人民论坛·学术前沿, 2021(10): 70-77. |
| XU W S. Analysis on the development of high-end conventional war capability in the US in the background of the great-power competition[J]. Frontiers, 2021(10): 70-77 (in Chinese). | |
| [5] | 张维明, 黄松平, 肖卫东, 等. 高端战争的指挥控制应对之策[J]. 指挥信息系统与技术, 2023, 14(4): 1-7. |
| ZHANG W M, HUANG S P, XIAO W D, et al. Command and control countermeasures for high-end war[J]. Command Information System and Technology, 2023, 14(4): 1-7 (in Chinese). | |
| [6] | 武晓龙, 吴涛涛, 张震. 高端战争中低成本无人机集群作战研究[J]. 战术导弹技术, 2023(5): 157-163. |
| WU X L, WU T T, ZHANG Z. Low-cost UAVs operational network in high-end warfare[J]. Tactical Missile Technology, 2023(5): 157-163 (in Chinese). | |
| [7] | 李军, 陈士超. 无人机蜂群关键技术发展综述[J]. 兵工学报, 2023, 44(9): 2533-2545. |
| LI J, CHEN S C. Overview of key technology and its development of drone swarm[J]. Acta Armamentarii, 2023, 44(9): 2533-2545 (in Chinese). | |
| [8] | 王瑞杰, 王得朝, 丰璐, 等. 国外无人机蜂群作战样式进展及反蜂群策略研究[J]. 现代防御技术, 2023, 51(4): 1-9. |
| WANG R J, WANG D C, FENG L, et al. Research progress and countermeasures against UAV swarm operations abroad[J]. Modern Defence Technology, 2023, 51(4): 1-9 (in Chinese). | |
| [9] | 张博, 梁延峰, 李建营, 等. 空中无人蜂群作战发展现状及对抗策略研究[J]. 中国电子科学研究院学报, 2022, 17(8): 755-763. |
| ZHANG B, LIANG Y F, LI J Y, et al. Research on the development of UAV swarm in combat and counter UAV swarm measures[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(8): 755-763 (in Chinese). | |
| [10] | 岳凡, 胥银华, 郭泽民. 美军小型低成本无人蜂群发展运用及对策[J]. 国防科技, 2021, 42(1): 27-31. |
| YUE F, XU Y H, GUO Z M. The US military’s development and application of small and low-cost unmanned swarms and countermeasures[J]. National Defense Technology, 2021, 42(1): 27-31 (in Chinese). | |
| [11] | 温晋俨. 特朗普政府时期美国空军建设研究[D]. 长沙: 国防科技大学, 2020: 29, 45. |
| WEN J Y. Research on the construction of American air force during trump administration[D]. Changsha: National University of Defense Technology, 2020: 29, 45 (in Chinese). | |
| [12] | 仲雪韵. 特朗普政府时期美国海军建设研究[D]. 长沙: 国防科技大学, 2020: 11, 24, 72. |
| ZHONG X Y. Research on the construction of American navy during trump administration[D]. Changsha: National University of Defense Technology, 2020: 11, 24, 72 (in Chinese). | |
| [13] | HAMILTON T, OCHMANEK D. Operating low-cost, reusable unmanned aerial vehicles in contested environments: RR-4407-AF[R]. Santa Monica: RAND Corporation, 2020. |
| [14] | 吕斯宁, 肖川, 冯恒振, 等. 集群协同作战技术现状与战争应用综述[J/OL]. 探测与控制学报, (2024-09-2)[2025-01-17]. . |
| LU S N, XIAO C, FENG H Z, et al. Overview of clustered cooperative combat technology: current status and warfare applications[J/OL]. Journal of Detection & Control, (2024-09-23)[2025-01-17]. (in Chinese). | |
| [15] | State Penn. Classification of the unmanned aerial systems[EB/OL]. (2024-08-05)[2025-01-17]. . |
| [16] | Congressional Research Service. Defense primer: Categories of uncrewed aircraft systems[EB/OL]. (2024-10-25)[2025-01-17]. . |
| [17] | SANTOS. CE marking and class marking for drones[EB/OL]. (2024-01-04)[2025-01-17]. . |
| [18] | HASSANALIAN M, ABDELKEFI A. Classifications, applications, and design challenges of drones: A review[J]. Progress in Aerospace Sciences, 2017, 91: 99-131. |
| [19] | CHAMOLA V, KOTESH P, AGARWAL A, et al. A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques[J]. Ad Hoc Networks, 2021, 111: 102324. |
| [20] | 胡健生, 罗卫兵, 张倩. 小型无人机技术与应用[M]. 西安: 西安电子科技大学出版社, 2022: 4. |
| HU J S, LUO W B, ZHANG Q. Small unmanned aerial vehicle technology and application[M]. Xi’an: Xidian University Press, 2022: 4 (in Chinese). | |
| [21] | 祝小平, 向锦武, 张才文, 等. 无人机设计手册[M]. 北京: 国防工业出版社, 2007:1,2,4,17,271. |
| ZHU X P, XIANG J W, ZHANG C W, et al. Unmanned aerial vehicle design manual[M]. Beijing: National Defense Industry Press, 2007:1,2,4,17,271 (in Chinese). | |
| [22] | Air Force U.S.. Small unmanned aircraft systems (SUAS) flight plan: 2016-2036[EB/OL]. (2016-05-17)[2025-01-17]. . |
| [23] | 黄明锐, 赵国林, 潘晓东. 无人机在蜂群作战中的应用与特点[J]. 军事文摘, 2022(11): 46-49. |
| HUANG M R, ZHAO G L, PAN X D. Application and characteristics of unmanned aerial vehicle in bee colony combat[J]. Military Digest, 2022(11): 46-49 (in Chinese). | |
| [24] | 董宇, 高敏, 张悦, 等. 美军蜂群无人机研究进展及发展趋势[J]. 飞航导弹, 2020(9): 37-42. |
| DONG Y, GAO M, ZHANG Y, et al. Research progress and development trend of American bee colony UAV[J]. Aerodynamic Missile Journal, 2020(9): 37-42 (in Chinese). | |
| [25] | 张健, 吴雄. 无人机集群及其动力需求分析[J]. 航空动力, 2021(4): 32-34. |
| ZHANG J, WU X. Analysis to the UAV swarms and powerplants[J]. Aerospace Power, 2021(4): 32-34 (in Chinese). | |
| [26] | Nation Creation Wiki. Modern day military pricing list[EB/OL]. (2024-06-10)[2025-01-17]. . |
| [27] | MDAA. Missile interceptors by cost[EB/OL]. (2024-02)[2025-01-17]. . |
| [28] | NEWDICK T. Infrared and regular electro-optical imagery of the F-16s and MQ-9s at holloman air force base[EB/OL]. (2023-05-02)[2025-01-17]. . |
| [29] | SUTTON H I. Iran rebuilds U.S. navy global hawk UAV it shot down[EB/OL]. (2020-06-14)[2025-01-17]. . |
| [30] | TAUNT O H . U.S: 6th MQ-9 reaper drone downed in Yemen, embarrassing video goes viral | watch[EB/OL]. (2024-05-30)[2025-01-17]. . |
| [31] | YEMENEXTRA. Yemeni air defenses shoot down US drone MQ-1 predator in Sanaa[EB/OL]. (2019-03-23)[2025-01-17]. . |
| [32] | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738. |
| JIA Y N, TIAN S Y, LI Q. Review on research progress of UAV cluster[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738 (in Chinese). | |
| [33] | 环球网. 美军承认其全球鹰无人机无法生存MQ9也一样[EB/OL]. (2021-07-25)[2025-01-17]. . |
| Net Huanqiu. The U.S. military has admitted that its global hawk drones cannot survive,and the MQ-9s are no different [EB/OL]. (2021-07-25)[2025-01-17]. (in Chinese). | |
| [34] | TIRPAK J A. Houthis shoot down third MQ-9; Five now lost to hostile fire in just over a year[EB/OL]. (2024-04-29)[2025-01-17]. . |
| [35] | 中国青年报. 新质战斗力——无人机系统[EB/OL]. (2020-09-04)[2025-01-17]. . |
| China Youth Daily. New quality combat capability—Unmanned aircraft system[EB/OL]. (2020-09-04)[2025-01-17]. (in Chinese). | |
| [36] | 法尔斯特伦, 格里森.无人机系统导论(第4版) [M]. 郭正, 王鹏, 陈清阳, 等, 译. 北京: 国防工业出版社, 2015:238. |
| FAHLSTROM P G, GLEASON T J. Introduction to UAV systems (4th Ed)[M]. GUO Z, WANG P, CHEN Q Y, et al, translated. Beijing: National Defense Industry Press, 2015:238 (in Chinese). | |
| [37] | CALHOUN P M. DARPA emerging technologies[J]. Strategic Studies Quarterly, 2016,10(3): 91-113. |
| [38] | 贾高伟, 郭正. 美军XQ-58A项目与应用模式分析[J]. 国防科技, 2021, 42(1): 1-6. |
| JIA G W, GUO Z. Analysis of the XQ-58A project of the US military and its modes of application[J]. National Defense Technology, 2021, 42(1): 1-6 (in Chinese). | |
| [39] | 祁圣君. 美军低成本可消耗无人机技术发展综述[J]. 飞航导弹, 2021(11): 6-11, 18. |
| QI S J. Review on the development of low-cost consumable UAV technology in US army[J]. Aerodynamic Missile Journal, 2021(11): 6-11, 18 (in Chinese). | |
| [40] | 高和, 许健明, 王永芳. 基于专利分析的无人机集群技术发展[J]. 国防科技, 2023, 44(4): 40-46. |
| GAO H, XU J M, WANG Y F. UAV swarm development based on patent analysis[J]. National Defense Technology, 2023, 44(4): 40-46 (in Chinese). | |
| [41] | 王朔. 基于专利分析的无人集群技术发展态势研究[J]. 科技情报研究, 2022, 4(1): 78-88. |
| WANG S. Technological development situation of unmanned swarm technology based on patent analysis[J]. Scientific Information Research, 2022, 4(1): 78-88 (in Chinese). | |
| [42] | 孙彧, 潘宣宏, 姜敏, 等. 无人机蜂群作战样式及运用探析[J]. 战术导弹技术, 2023(5): 142-150. |
| SUN Y, PAN X H, JIANG M, et al. Analysis on the combat style and application of UAV swarms[J]. Tactical Missile Technology, 2023(5): 142-150 (in Chinese). | |
| [43] | 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018: 12. |
| DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing: Science Press, 2018: 12 (in Chinese). | |
| [44] | 贾高伟, 侯中喜. 美军无人机集群项目发展[J]. 国防科技, 2017, 38(4): 53-56. |
| JIA G W, HOU Z X. The analysis and enlightenment about the UAV swarming project of the United States Military[J]. National Defense Science & Technology, 2017, 38(4): 53-56 (in Chinese). | |
| [45] | 孟奇. 中美与导弹及其技术控制制度[D]. 南京: 南京大学, 2017: 10. |
| MENG Q. China and the United States and missile technology control system[D]. Nanjing: Nanjing University, 2017: 10 (in Chinese). | |
| [46] | Reuters. Berlin says missile supply to Kyiv won’t automatically follow US supplies[EB/OL]. (2023-09-12)[2025-01-17]. . |
| [47] | 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908. |
| LIU L, LIU D W, WANG X G, et al. Development status and prospect of UAV cluster and anti-UAV cluster[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908 (in Chinese). | |
| [48] | Review Military. About guided/self-guided missile warheads[EB/OL]. (2013-11-29)[2025-01-17]. . |
| [49] | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. |
| WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). | |
| [50] | 方永红. 旋翼无人机系统技术[M]. 北京: 航空工业出版社, 2020: 2. |
| FANG Y H. Technologies of rotor unmanned aircraft systems[M]. Beijing: Aviation Industry Press, 2020: 2 (in Chinese). | |
| [51] | 王祥科, 沈林成, 李杰. 无人机集群控制理论与方法[M]. 上海: 上海交通大学出版社, 2021: 5. |
| WANG X K, SHEN L C, LI J. UAV swarms control theory and methods[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 5 (in Chinese). | |
| [52] | GONZÁLEZ N, SOLERA M, RUIZ F, et al. A quality of experience model for live video in first-person-view drone control in cellular networks[J]. Computer Networks, 2023, 237: 110089. |
| [53] | NEWDICK T, ROGOWAY T. Marine XQ-58 valkyries will be electronic warfare platforms for F-35s[EB/OL]. (2023-05-04)[2025-01-17]. . |
| [54] | 朱超磊, 袁成, 杨佳会, 等. 2021年国外军用无人机装备技术发展综述[J]. 战术导弹技术, 2022(1): 38-45. |
| ZHU C L, YUAN C, YANG J H, et al. Overview of the development of foreign military UAV systems and technology in 2021[J]. Tactical Missile Technology, 2022(1): 38-45 (in Chinese). | |
| [55] | 孙海文, 庞威, 于邵祯, 等. 国外无人机蜂群发展状况及启示[J]. 指挥控制与仿真, 2022, 44(2): 1-6. |
| SUN H W, PANG W, YU S Z, et al. Enlightenment and development of unmanned aerial vehicle swarm abroad[J]. Command Control & Simulation, 2022, 44(2): 1-6 (in Chinese). | |
| [56] | 鲁亚飞, 陈清阳, 王鹏, 等. 中小型固定翼无人机精确回收技术发展与关键技术分析[J]. 飞航导弹, 2020(4): 59-65. |
| LU Y F, CHEN Q Y, WANG P, et al. Development and key technology analysis of precise recovery technology for small and medium-sized fixed-wing UAV[J]. Aerodynamic Missile Journal, 2020(4): 59-65 (in Chinese). | |
| [57] | 王彤. 美兰德公司发布《在竞争环境中使用低成本可回收无人机——作战概念的初步评估》报告[EB/OL]. (2020-05-13)[2025-01-17]. . |
| WANG T. The RAND corporation released a report titled Operating low-cost, reusable unmanned aerial vehicles in contested environments—Preliminary evaluation of operational concepts[EB/OL]. (2020-05-13)[2025-01-17]. (in Chinese). | |
| [58] | 《国外无人机大全》编写组. 国外无人机大全[M]. 北京: 航空工业出版社, 2001: 17, 37-38, 119,208. |
| Compile group of complete guide to foreign UAVs. Complete guide to foreign UAVs[M]. Beijing: Aviation Industry Press, 2001: 17, 37-38, 119,208 (in Chinese). | |
| [59] | 《世界无人机大全》编写组. 世界无人机大全[M]. 北京: 航空工业出版社, 2004: 8, 52, 71, 109. |
| Compile Group of complete guide of world UAVs. Complete guide of world UAVs[M]. Beijing: Aviation industry press, 2004: 8, 52, 71, 109 (in Chinese). | |
| [60] | 陶于金, 李沛峰. 无人机系统发展与关键技术综述[J]. 航空制造技术, 2014, 57(20): 34-39. |
| TAO Y J, LI P F. Development and key technology of UAV[J]. Aeronautical Manufacturing Technology, 2014, 57(20): 34-39 (in Chinese). | |
| [61] | 费陈, 赵亮, 孙许可, 等. 无人机蜂群技术发展研究[J/OL]. 火炮发射与控制学报, (2023-09-05)[2025-01-17]. . |
| FEI C, ZHAO L, SUN X K, et al. Research on the development of UAV bee colony technology[J/OL]. Journal of Gun Launch & Control, (2023-09-05)[2025-01-17]. (in Chinese). | |
| [62] | 刘箴, 吴馨远, 许洁心. 无人机集群作战系统的新发展及趋势分析[J]. 弹箭与制导学报, 2022, 42(6): 32-45. |
| LIU Z, WU X Y, XU J X. New development and trend analysis of UAV swarming operation system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(6): 32-45 (in Chinese). | |
| [63] | 罗广文, 果金龙, 范会兵. 集中爆发、多有突破: 我国无人机发展概况[J]. 轻兵器, 2022(9): 24-27. |
| LUO G W, GUO J L, FAN H B. Centralized outbreaks and multiple breakthroughs: general situation of UAV development in China[J]. Small Arms, 2022(9): 24-27 (in Chinese). | |
| [64] | 李龙, 郑天慧. 低成本可消耗飞行器及其动力发展分析[J]. 航空动力, 2021(3): 11-14. |
| LI L, ZHENG T H. Development of low-cost expendable UAVs and powerplants[J]. Aerospace Power, 2021(3): 11-14 (in Chinese). | |
| [65] | 王士奇. 中国无人机动力装置现状浅析[J]. 航空动力, 2019(2): 9-12. |
| WANG S Q. The status of the power plants for UAVs in China[J]. Aerospace Power, 2019(2): 9-12 (in Chinese). | |
| [66] | 伍赛特. 无人机动力系统技术特点及选型研究[J]. 科技创新与应用, 2024, 14(15): 1-8. |
| WU S T. Research on the technical characteristics and selection of unmanned aerial vehicle power systems[J]. Technology Innovation and Application, 2024, 14(15): 1-8 (in Chinese). | |
| [67] | 马歇尔, 巴恩哈特, 沙佩, 等. 无人机系统导论(第2版)[M]. 刘树光, 张文倩, 王柯, 等, 译.北京: 国防工业出版社, 2022: 174,334. |
| MARSHALL D M, BARNHART R K, SHAPPEE E, et al. Introduction to unmanned aircraft systems (2nd Ed) [M]. LIU S G, ZHANG W Q, WANG K, et al, translated. Beijing: National Defense Industry Press, 2022: 174, 334 (in Chinese). | |
| [68] | 谭米. 2023年军用无人机动力进展[J]. 航空动力, 2024(1): 19-23. |
| TAN M. Progress of military UAVs engine in 2023[J]. Aerospace Power, 2024(1): 19-23 (in Chinese). | |
| [69] | 王鹏, 李龙. 美国无人机动力装置发展研究[C]∥探索 创新 交流——第六届中国航空学会青年科技论坛文集(下册). 沈阳: 中国航空学会, 2014: 214-218. |
| WANG P, LI L. Investigation of the Development of the UAV power plant in the USA[C]∥Exploration, Innovation and Exchange: Collection of the 6th Youth Science and Technology Forum of Chinese Society of Aeronautics and Astronautics (Volume Ⅱ). Shenyang: Chinese Society of Aeronautics and Astronautics, 2014: 214-218 (in Chinese). | |
| [70] | 谢辉, 王力, 张琳. 一种适用于中小型无人机的新型螺旋桨设计[J]. 航空工程进展, 2015, 6(1): 71-76. |
| XIE H, WANG L, ZHANG L. A new type of propeller design for the medium/small UAV[J]. Advances in Aeronautical Science and Engineering, 2015, 6(1): 71-76 (in Chinese). | |
| [71] | 王春利, 卢杰, 任志文, 等. 小型航空活塞发动机发展现状与应用研究[C]∥第九届中国航空学会青年科技论坛论文集. 北京: 中国航空学会, 2020: 324-330. |
| WANG C L, LU J, REN Z W, et al. Current development state and investigation of application for small piston aero-engine[C]∥Collection of the 9th Youth Science and Technology Forum of Chinese Society of Aeronautics and Astronautics. Beijing: Chinese Society of Aeronautics and Astronautics, 2020: 324-330 (in Chinese). | |
| [72] | 王兴海, 马震, 郑勇. 无人机用小型航空活塞发动机的发展[C]∥尖兵之翼--2006中国无人机大会论文集. 北京: 中国航空学会, 2006: 523-527. |
| WANG X H, MA Z, ZHENG Y. Development of small piston aero-engines for UAVs[C]∥Vanguard Wings: Proceedings of the 2006 China UAV Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2006: 523-527 (in Chinese). | |
| [73] | AIRBUS. Future combat air system: A400M clears the first hurdle as a remote carrier launcher[EB/OL]. (2022-02-21)[2025-01-17]. . |
| [74] | AIRBUS. Airbus demonstrates manned-unmanned teaming for future air combat systems[EB/OL]. (2018-10-02)[2025-01-17]. . |
| [75] | Islamic World News. Military knowledge: Arash-2 suicide drone; world’s longest-range suicide drone[EB/OL]. (2022-10-30)[2025-01-17]. . |
| [76] | Islamic World News. Iran unveils drone-carrying fleet [EB/OL]. (2022-07-25)[2025-01-17]. . |
| [77] | 张安平, 何志凯, 裴锦华, 等. 固定翼无人机多机连续箱式发射系统设计要求: [S].北京: 中国航空综合技术研究所, 2018. |
| ZHANG A P, HE Z K, PEI J H, et al. Design requirements for multiple fixed-wing UAV container launching system: [S]. Beijing: AVIC China Aero-Polytechnology Establishment, 2018 (in Chinese). | |
| [78] | Express Defense. First shahed-136 prototype was created in Germany in the 1 980 s, and It was called DAR[EB/OL]. (2023-11-14)[2025-01-17]. . |
| [79] | Shutterstock. Imágenes libres de regalías de unmanned combat aerial vehicle ucav[EB/OL]. (2023-11-30)[2025-01-17]. . |
| [80] | Aubi. Kentron ARD-10 Lark[EB/OL]. (2023-04-15)[2025-01-17]. . |
| [81] | Globalmil. Harpy unmanned aerial vehicle[EB/OL]. (2010-02-17)[2025-01-17]. . |
| [82] | 王瀚鹏, 崔晓萍. “哈比”巡飞弹:开创无人机自主作战新模式[EB/OL]. (2020-10-30)[2025-01-17]. . |
| WANG H P, CUI X P. Harpy cruise missile: Creating a new model of autonomous drone combat[EB/OL]. (2020-10-30)[2025-01-17]. (in Chinese). | |
| [83] | IAI. Harop long range loitering munition[EB/OL]. (2023-11-23)[2025-01-17]. . |
| [84] | Azemedia. Great path of azerbaijan’s armament: Defence industry from ground zero[EB/OL]. (2022-09-12)[2025-01-17]. . |
| [85] | 张有. 空中“敢死队员”: 以色列“哈洛普” 自杀式无人机[J]. 坦克装甲车辆, 2016(2): 40-43. |
| ZHANG Y. Aerial “death squad”: Israeli “harop” suicide drone[J]. Tank & Armoured Vehicle, 2016(2): 40-43 (in Chinese). | |
| [86] | 瀚宇联昉. 还以为是个不起眼的盒子。仔细一看,还挺值得玩味的一个东西[EB/OL]. (2022-05-26)[2025-01-17]. . |
| HAN Y L F. Thought it was just an inconspicuous box. but after a closer look, it turned out to be quite interesting[EB/OL]. (2022-05-26)[2025-01-17]. (in Chinese). | |
| [87] | 南京航空航天大学. 中国航展开幕!南航多款无人机再次亮相[EB/OL]. (2021-09-30)[2025-01-17]. . |
| Nanjing University of Aeronautics and Astronautics. China Airshow opens! Nanjing University of Aeronautics and Astronautics unveils several drones[EB/OL]. (2021-09-30)[2025-01-17]. (in Chinese). | |
| [88] | 空天力量. “剑翔”无人机交付台军,4年仅能生产200架[EB/OL]. (2024-10-12)[2025-01-17]. . |
| power Aerospace. Rising sword UAVs were delivered to the Taiwan military, and only 200 UAVs could be produced in 4 years[EB/OL]. (2024-10-12)[2025-01-17]. (in Chinese). | |
| [89] | Tasnim News Agency. Iranian armed forces at their most capable state: top general[EB/OL]. (2023-09-22)[2025-01-17]. . |
| [90] | SYNGAIVSKA S. Russia delivers shahed-136 kamikaze drones to belarus to fire Ukraine[EB/OL]. (2022-10-11)[2025-01-17]. . |
| [91] | VOLTZZ. US & German harassment drone/LOCUST/DAR designs[EB/OL]. (2023-05-17)[2025-01-17]. . |
| [92] | 祝小平, 周洲, 耿峰, 等. 反辐射无人机系统设计[M]. 上海: 上海交通大学出版社, 2024: 226, 236. |
| ZHU X P, ZHOU Z, GENG F. Design for anti-radiation unmanned aerial vehicle[M]. Shanghai: Shanghai Jiao Tong University Press, 2024: 226, 236 (in Chinese). | |
| [93] | 裴锦华, 巫成荣, 马滢, 等. 无人机发射系统通用要求: [S]. 北京: 中国航空综合技术研究所, 2006. |
| PEI J H, WU C R, MA Y, et al. General requirements of unmanned aircraft launching system: [S]. Beijing: AVIC China Aero-Polytechnology Establishment, 2006 (in Chinese). | |
| [94] | 旷建敏, 王纯, 曾佳, 等. 固定翼无人机空中投放系统设计要求: [S]. 北京: 中国航空综合技术研究所, 2018. |
| KUANG J M, WANG C, ZENG J, et al. Design requirements for UAV air launch system: [S]. Beijing: AVIC China Aero-Polytechnology Establishment, 2018 (in Chinese). | |
| [95] | 裴锦华, 舒振杰, 曾佳, 等. 固定翼无人机火箭助推发射系统设计要求: [S]. 北京: 中国航空综合技术研究所, 2018. |
| PEIJH, SHU Z J, ZENG J, et al. Design requirements for fixed-wing UAV rocket-aided takeoff system: [S]. Beijing: AVIC China Aero-Polytechnology Establishment, 2018 (in Chinese). | |
| [96] | 郭小良, 裴锦华, 杨忠清, 等. 无人机折叠机翼展开运动特性研究[J]. 南京航空航天大学学报, 2006, 38(4): 438-441. |
| GUO X L, PEI J H, YANG Z Q, et al. Movement characteristic of UAV folding wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(4): 438-441 (in Chinese). | |
| [97] | 姜其用, 王晓东, 姚琳, 等. 一种无人机同轴发射连接及分离装置: CN217980052U[P]. 2022-12-06. |
| JIANG Q Y, WANG X D, YAO L, et al. A coaxial launching connection and separation device for unmanned aerial vehicle: CN217980052U[P]. 2022-12-06 (in Chinese). | |
| [98] | 姜其用, 姚琳, 张晓木, 等. 用于箱式发射的固定翼无人机折叠机翼及其解锁折叠方法: CN115503934A[P]. 2022-12-23. |
| JIANG Q Y, YAO L, ZHANG X M, et al. Fixed-wing unmanned aerial vehicle folding wing for box-type launching and unlocking and folding method of fixed-wing unmanned aerial vehicle folding wing: CN115503934A[P]. 2022-12-23 (in Chinese). | |
| [99] | 李博, 祝小平, 杨俊鹏, 等. 一种用于箱式发射无人机发动机与螺旋桨啮合的自动控制装置: CN111216884A[P]. 2020-06-02. |
| LI B, ZHU X P, YANG J P, et al. Automatic control device for meshing of engine and propeller of box-type launching unmanned aerial vehicle: CN111216884A[P]. 2020-06-02 (in Chinese). | |
| [100] | 安彬, 杨俊鹏, 孟毛毛, 等. 一种螺旋桨无人机箱内发射仿真方法: CN111731500A[P]. 2020-10-02. |
| AN B, YANG J P, MENG M M, et al. Propeller unmanned aerial vehicle in-box launching simulation method: CN111731500A[P]. 2020-10-02 (in Chinese). | |
| [101] | 王晓东, 肖杰, 张晓木, 等. 固定翼无人机机翼折叠、自动展开及锁定装置: CN217893206U[P]. 2022-11-25. |
| WANG X D, XIAO J, ZHANG X M, et al. Wing folding, automatic unfolding and locking device for fixed-wing unmanned aerial vehicle: CN217893206U[P]. 2022-11-25 (in Chinese). | |
| [102] | LIU R, XIAO Y F, ZHANG H. The algorithm research based on optimal quadratic of launch control law access time of folding wing UAV[J]. DEStech Transactions on Computer Science and Engineering, 2019: 28672. |
| [103] | 胡浩磊, 邢培梅, 张鹏臻, 等. 军事噪声性听力损失研究进展[J]. 中华耳科学杂志, 2021, 19(2): 311-315. |
| HU H L, XING P M, ZHANG P Z, et al. Advances in research on military noise-induced hearing loss[J]. Chinese Journal of Otology, 2021, 19(2): 311-315 (in Chinese). | |
| [104] | 徐大平, 王宪成. 内燃机噪声控制的现状与发展[J]. 装甲兵工程学院学报, 2005(2): 55-58. |
| XU D P, WANG X C. Development of the noise controlling technology in internal-combustion engine[J]. Journal of Armored Force Engineering Institute, 2005(2): 55-58 (in Chinese). | |
| [105] | 任志文, 亓洪玲, 杨俊飞, 等. 无人机动力装置选型分析[C]∥2014(第五届)中国无人机大会论文集. 北京: 中国航空学会, 2014: 446-450. |
| REN Z W, QI H L, YANG J F, et al. Selection analysis of UAV power plant[C]∥ Proceedings of the 5th China UAV Conference in 2014. Beijing: Chinese Society of Aeronautics and Astronautics, 2014: 446-450 (in Chinese). | |
| [106] | 周明, 郭志永, 汪强, 等. 一种弹射式无人机动力系统快速启动方法: CN113479334A[P]. 2021-10-08. |
| ZHOU M, GUO Z Y, WANG Q, et al. Quick starting method for power system of ejection type unmanned aerial vehicle: CN113479334A[P]. 2021-10-08 (in Chinese). | |
| [107] | 黄凯. 负压式折叠翼设计及力学性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2020: 2, 3. |
| HUANG K. Design and mechanical properties of negative pressure folding wing[D]. Harbin: Harbin Engineering University, 2020: 2, 3 (in Chinese). | |
| [108] | 张钦, 聂宏, 张明, 等. 无人机折叠翼展开动力学分析[J]. 机械设计与制造工程, 2015, 44(2): 12-16. |
| ZHANG Q, NIE H, ZHANG M, et al. Dynamic analysis of UAV folding wing deployment process[J]. Machine Design and Manufacturing Engineering, 2015, 44(2): 12-16 (in Chinese). | |
| [109] | Islamic World News. Military knowledge: Harop suicide drone[EB/OL]. (2024-01-05)[2025-01-17]. . |
| [110] | 廖波, 袁昌盛, 李永泽. 折叠机翼无人机的发展现状和关键技术研究[J]. 机械设计, 2012, 29(4): 1-5. |
| LIAO B, YUAN C S, LI Y Z. Development status and key technologies of folding-wing unmanned air vehicle[J]. Journal of Machine Design, 2012, 29(4): 1-5 (in Chinese). | |
| [111] | SARUKHANYAN V. The killing business: Israeli “kamikaze” drones used by Azerbaijan utilized French and Swiss technologies[EB/OL]. (2020-12-03)[2025-01-17]. . |
| [112] | 张欢, 司亮, 宋国磊, 等. 可折叠机翼与翼身融合设计的三角翼无人机: CN221954585U[P]. 2024-11-05. |
| ZHANG H, SI L, SONG G L, et al. Delta wing unmanned aerial vehicle with foldable wing and wing body integrated design: CN221954585U[P]. 2024-11-05 (in Chinese). | |
| [113] | 吴静, 蔡海锋, 刘俊良. 纳卡地区冲突无人机攻防运用分析及地空反无人对策建议[J]. 现代防御技术, 2021, 49(3): 13-20. |
| WU J, CAI H F, LIU J L. Analysis on the operation of attack and defense of UAVs in naka conflict and suggestions for ground-to-air anti-UAVs[J]. Modern Defence Technology, 2021, 49(3): 13-20 (in Chinese). | |
| [114] | 徐同乐, 刘方, 肖玉杰, 等. 国外无人机蜂群作战典型战例及发展趋势[J]. 中国电子科学研究院学报, 2023, 18(10): 946-951. |
| XU T L, LIU F, XIAO Y J, et al. Operational application and technology development of foreign UAV swarm[J]. Journal of China Academy of Electronics and Information Technology, 2023, 18(10): 946-951 (in Chinese). | |
| [115] | 全面的剖析. 一夜烧光 10到13亿,伊朗导弹或让以色列破产?若中国遇到咋应对?[EB/OL]. (2024-04-24)[2025-01-17]. . |
| Analysis Comprehensive. Spending $1- 1.3billion in a night on defense, Iranian missiles may bankrupt Israel? how would China respond if facing a similar situation? [EB/OL]. (2024-04-24)[2025-01-17]. (in Chinese). | |
| [116] | 司马平邦. 俄乌局势再次逆转!俄动用无人机饱和打击,数量庞大乌军难以招架[EB/OL]. (2022-10-21) [2025-01-17]. . |
| SIMA P B. The situation between Russia and Ukraine has taken another dramatic turn! Russia launched a saturation drone strike with overwhelming numbers, leaving Ukrainian forces struggling to defend. [EB/OL]. (2022-10-21) [2025-01-17]. (in Chinese). | |
| [117] | 阿K科技聊. 以色列黑客爆料:俄罗斯救急军购被敲竹杠,一架13万美元要不要[EB/OL]. (2024-02-19) [2025-01-17]. . |
| A-K Tech Talk. Israeli hackers revealed: Russia is being ripped off in its emergency military purchases, interested in a UAV priced at $ 130,000? [EB/OL]. (2024-02-19) [2025-01-17]. (in Chinese). | |
| [118] | 袁涛, 符松海, 刘新玉, 等. 外军低成本无人机成本控制技术浅析与启示[J]. 教练机, 2024(2): 9-14. |
| YUAN T, FU S H, LIU X Y, et al. Analysis and inspiration of cost control technology of low-cost UAVs in foreign armies[J]. Trainer, 2024(2): 9-14 (in Chinese). | |
| [119] | 王海峰 .高性能协同作战无人机的发展与思考[J]. 航空学报, 2024, 45(17): 530304. |
| WANG H F. Development of high performance collaborative combat UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530304 (in Chinese). | |
| [120] | CARLS B. The cost-effective IAI harop: Analyzing the unit cost and value[EB/OL]. (2023-10-03)[2025-01-17]. . |
| [1] | 李威, 王乐, 高久安, 席建祥, 黄渭清. 面向领导跟随无人机蜂群的定向驱离攻击方法[J]. 航空学报, 2024, 45(12): 329451-329451. |
| [2] | 孙维国, 史瑞华, 林左鸣, 刘代军, 张文山, 曹军伟, 范中国, 马聪慧, 付泽川, 刘爱华, 田鹏, 钱勤建, 陈飞, 段磊, 崔金平, 梁晓嘉. 基于固液相变燃料的冲压发动机[J]. 航空学报, 2019, 40(5): 122780-122780. |
| [3] | 王荣巍, 何锋, 周璇, 鲁俊, 李二帅. 面向无人机蜂群的航电云多层任务调度模型[J]. 航空学报, 2019, 40(11): 323183-323183. |
| [4] | 谭红力;黄新生;岳冬雪. 低成本捷联惯导不对称动态误差的神经网络补偿[J]. 航空学报, 2008, 29(2): 443-449. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学


