王立国1(), 周靓2, 张颂1, 吴勇1, 李鹏1, 陈佳兴1
收稿日期:
2023-08-17
修回日期:
2023-08-25
接受日期:
2023-09-07
出版日期:
2023-09-25
发布日期:
2023-09-21
通讯作者:
王立国
E-mail:3216054916@qq.com
Liguo WANG1(), Liang ZHOU2, Song ZHANG1, Yong WU1, Peng LI1, Jiaxing CHEN1
Received:
2023-08-17
Revised:
2023-08-25
Accepted:
2023-09-07
Online:
2023-09-25
Published:
2023-09-21
Contact:
Liguo WANG
E-mail:3216054916@qq.com
摘要:
结冰将严重影响直升机飞行性能,威胁直升机飞行安全,旋翼是直升机受到结冰影响的主要部件,如何低能耗、高效率地开展旋翼防除冰是当前直升机亟待解决的问题。旋翼结冰与固定翼不同,其流场更加复杂,许多在固定翼飞机上表现良好的防除冰技术无法在直升机旋翼上直接使用。首先介绍了旋翼结冰的特点及其主要响应因素,概括了结冰对直升机气动性能的影响;其次重点阐述了现有防除冰技术的原理、优劣和适用范围;详细论述了以电热-机械式和电热-涂层式为代表的复合防除冰技术的优势,提出了直升机旋翼防除冰后续发展的建议,对于促进直升机旋翼防除冰技术的发展具有一定的指导意义。
中图分类号:
王立国, 周靓, 张颂, 吴勇, 李鹏, 陈佳兴. 直升机旋翼防除冰技术研究进展[J]. 航空学报, 2023, 44(S2): 729458-729458.
Liguo WANG, Liang ZHOU, Song ZHANG, Yong WU, Peng LI, Jiaxing CHEN. Research progress on anti-icing and de-icing technologies for helicopter rotors[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729458-729458.
表2
部分超疏水电热混合式飞机防除冰技术研究进展
年份 | 研究单位 | 方法 | 实验条件 | 节能比/% |
---|---|---|---|---|
2011 | 加拿大魁北克大学[ | 疏水与电热 | LWC=0.3 g/m3, MVD=20 μm, T=-5~-20 ℃, V=21 m/s | 33 |
2011 | 加拿大阿尔伯塔大学[ | 超疏水与电热 | LWC=1.5 g/m3, MVD=50 μm, T=-17 ℃, V=28 m/s | 80 |
2015 | 空客公司与慕尼黑工业大学[ | 超疏水与电热和电机械 | LWC=0.45 g/m3, MVD=20 μm T=-8 ℃, V=120 m/s | 9 |
2017 | 加拿大肯高迪亚大学[ | 超疏水与电热 | LWC=4.8 g/m3, MVD=60 μm, T=-15 ℃, V=23 m/s | 50 |
2018 | 中国西北工业大学[ | 超疏水与电热 | LWC=0.377 g/m3, MVD=70 μm, T=-5 ℃, V=15 m/s | 90 |
1 | 陈希. 旋翼结冰的高精度数值模拟与防/除冰方法研究[D]. 南京: 南京航空航天大学, 2019. |
CHEN X. Investigations on high accuracy numerical simulation and anti/de-icing methods for rotor icing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
2 | 李岩, 王绍龙, 易贤, 等. 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017, 38(2): 520703. |
LI Y, WANG S L, YI X, et al. An icing wind tunnel test on icing characteristics of cylinder rotating around a shaft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520703 (in Chinese). | |
3 | 徐玉貌, 吕少杰, 曹义华, 等. 旋翼桨叶结冰对直升机飞行性能的影响[J]. 航空动力学报, 2016, 31(2): 399-404. |
XU Y M, LYU S J, CAO Y H, et al. Effects of rotor blade icing on helicopter flight performance[J]. Journal of Aerospace Power, 2016, 31(2): 399-404 (in Chinese). | |
4 | 刘福华, 金可, 余雄勇. 某型直升机旋翼防除冰测试技术方法研究与应用[J].测控技术, 2015, 34: 35-37. |
LIU F H, JIN K, YU X Y. Research and application of the helicopter rotor anti-icing/deicing test technology [J]. Measurement & Control Technology, 2015, 34: 35-37 (in Chinese). | |
5 | 李伟斌, 郝云权, 王建涛, 等. 直升机旋翼结冰影响及防/除冰方法综述[J]. 航空动力学报, 2023, 38(2): 257-268. |
LI W B, HAO Y Q, WANG J T, et al. Review on influences of helicopter rotor icing and anti-/ de-icing methods[J]. Journal of Aerospace Power, 2023, 38(2): 257-268 (in Chinese). | |
6 | 陈宁立, 杜健民, 吉洪湖, 等. 离心力对于旋转叶片表面积冰影响的数值模拟研究[J]. 推进技术, 2020, 41(6): 1314-1323. |
CHEN N L, DU J M, JI H H, et al. Numerical study of effects of centrifugal force on ice accretion on a rotor blade[J]. Journal of Propulsion Technology, 2020, 41(6): 1314-1323 (in Chinese). | |
7 | LAMRAOUI F, FORTIN G, BENOIT R, et al. Atmospheric icing impact on wind turbine production[J]. Cold Regions Science and Technology, 2014, 100: 36-49. |
8 | MUHAMMED M, VIRK M S. Ice accretion on rotary-wing unmanned aerial vehicles—a review study[J]. Aerospace, 2023, 10(3): 261. |
9 | LI L K, NING Z, HU H. An experimental study on the transient ice accretion process over a rotating UAV propeller[C]∥Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017. |
10 | 倪章松, 刘森云, 张军, 等. 环境参数对飞机防冰热载荷的影响规律[J]. 航空动力学报, 2021, 36(1): 8-14. |
NI Z S, LIU S Y, ZHANG J, et al. Influnce of environment parameters on anti-icing heat load for aircraft[J]. Journal of Aerospace Power, 2021, 36(1): 8-14 (in Chinese). | |
11 | MUHAMMED M, VIRK M S. Ice accretion on fixed-wing unmanned aerial vehicle—a review study[J]. Drones, 2022, 6(4): 86. |
12 | 何治, 常士楠, 袁修干. 悬停状态下直升机旋翼水滴撞击特性研究[J]. 北京航空航天大学学报, 2003, 29(11): 1055-1058. |
HE Z, CHANG S N, YUAN X G. Research on droplet impingement property of rotor blade in hover[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 1055-1058 (in Chinese). | |
13 | 张威, 林永峰, 陈平剑. 基于欧拉方法的旋翼翼型结冰数值模拟及参数影响[J]. 南京航空航天大学学报, 2011, 43(3): 375-380. |
ZHANG W, LIN Y F, CHEN P J. Numerical simulation of ice accretion and parameter effects based on eulerian droplet model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 375-380 (in Chinese). | |
14 | 陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报, 2017, 38(6): 120745. |
CHEN X, ZHAO Q J. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120745 (in Chinese). | |
15 | CAMPBELL S E, BROEREN A P, BRAGG M B. Sensitivity of aircraft performance to icing parameter variations[J]. Journal of Aircraft, 2007, 44(5): 1758-1760. |
16 | LI L K, LIU Y, ZHANG Z C, et al. Effects of thermal conductivity of airframe substrate on the dynamic ice accretion process pertinent to UAS inflight icing phenomena[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1184-1195. |
17 | DRURY M D, SZEFI J T, PALACIOS J L. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft, 2017, 54(1): 220-228. |
18 | LI W B, LI K C, SONG C, et al. Effect of droplet MVD on icing collection efficiency for a helicopter blade [C]∥32nd Congress of the International Council of the Aeronautical Sciences. 2021. |
19 | KREEGER R E, TSAO J. Ice shapes on a tail rotor[R]. 2014 |
20 | 王正之. 直升机旋翼结冰数值模拟及试验研究[D]. 南京: 南京航空航天大学, 2017. |
WANG Z Z. Numerical simulation and experimental study on helicopter rotor icing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). | |
21 | 王正之, 杜孟华, 朱春玲, 等. 直升机旋翼结冰后三维桨叶气动特性数值分析[J]. 空军工程大学学报(自然科学版), 2021, 22(1): 33-38. |
WANG Z Z, DU M H, ZHU C L, et al. A numerical analysis on aerodynamic characteristics of three-dimensional iced rotor[J]. Journal of Air Force Engineering University (Natural Science Edition), 2021, 22(1): 33-38 (in Chinese). | |
22 | 黄明其, 王亮权, 袁红刚, 等. 直升机前飞状态旋翼结冰风洞试验研究[J]. 北京航空航天大学学报, 2022, 48(6): 929-936. |
HUANG M Q, WANG L Q, YUAN H G, et al. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936 (in Chinese). | |
23 | VILLENEUVE E, SAMAD A, VOLAT C, et al. Experimental investigation of icing effects on a hovering drone rotor performance[J]. Drones, 2022, 6(11): 345. |
24 | YAN S, OPAZO T, PALACIOS J, et al. Experimental evaluation of multi-rotor UAV operation under icing conditions [C]∥Proceedings of the Annual Forum Proceedings-AHS International. 2018. |
25 | CAO Y, CHEN K. Helicopter icing[J]. The Aeronautical Journal, 2010, 114(1152): 83-90. |
26 | ZHU Y, PALACIOS J, ROSE J, et al. Numerical simulation and experimental validation of tailored wave guides for ultrasonic de-icing on aluminum plates[R]. 2010 |
27 | 何舟东, 朱永峰, 周景锋. 飞机电脉冲除冰技术探讨[J]. 实验流体力学, 2016, 30(2): 38-45. |
HE Z D, ZHU Y F, ZHOU J F. Study on electro-impulse de-icing technology[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 38-45 (in Chinese). | |
28 | 王毅, 元辛, 张峰. 飞机机翼防除冰系统研究进展[J]. 河南科学, 2012, 30(9): 1246-1250. |
WANG Y, YUAN X, ZHANG F. The development of the wing ice protection system[J]. Henan Science, 2012, 30(9): 1246-1250 (in Chinese). | |
29 | PARENT O, ILINCA A. Anti-icing and de-icing techniques for wind turbines: critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96. |
30 | RYKACZEWSKI K, ANAND S, SUBRAMANYAM S B, et al. Mechanism of frost formation on lubricant-impregnated surfaces[J]. Langmuir, 2013, 29(17): 5230-5238. |
31 | KULINICH S A, FARHADI S, NOSE K, et al. Superhydrophobic surfaces: are they really ice-repellent[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(1): 25-29. |
32 | LAZAUSKAS A, GUOBIENĖ A, PROSYČEVAS I, et al. Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles[J]. Materials Characterization, 2013, 82: 9-16. |
33 | 周煜杰. 飞机防除冰方法的总结与探究[J]. 现代商贸工业, 2019, 40(1): 195-196. |
ZHOU Y J. Summary and exploration of anti-deicing methods for aircraft[J]. Modern Business Trade Industry, 2019, 40(1): 195-196 (in Chinese). | |
34 | BLAHA B J, EVANICH P L. Pneumatic boot for helicopter rotor deicing [C]∥Proceedings of Air Transportation and Safety. 1981: 425-445. |
35 | REINMANN J J, SHAW R J, RANAUDO R J. NASA’s Program on Icing Research and Technology [C]∥Proceedings of the Symposium on Flight in Adverse Environmental Conditions. 1989. |
36 | GRAHAM M, HAWORTH L, KIMBERLY J. JUH-1H pneumatic boot deicing system flight test evaluation [R]. 1987. |
37 | 张佳培. 基于石墨烯电热膜的直升机旋翼防除冰系统设计[M]. 武汉:华中科技大学, 2021. |
ZHANG J P. Design of helicopter rotor electrothermal anti-icing and de-icing system of graphene flexible heating thin-film [M]. Wuhan: Huazhong University of Science & Technology, 2021 (in Chinese). | |
38 | DRURY M D, SZEFI J T, PALACIOS J L. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft, 2017, 54(1): 220-228. |
39 | PALACIOS J, WOLFE D, BAILEY M, et al. Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades[J]. Journal of the American Helicopter Society, 2015, 60(3): 1-12. |
40 | 李斌. 飞机除冰/防冰液及除冰技术[J]. 清洗世界, 2012, 28(1): 26-31. |
LI B. Brief survey of deicing/anti-icing fluid and techniques for aircraft[J]. Cleaning World, 2012, 28(1): 26-31 (in Chinese). | |
41 | COFFMAN H J. Helicopter rotor icing protection methods[J]. Journal of the American Helicopter Society, 1987, 32(2): 34-39. |
42 | 锁俊睿, 刘壮, 高长水. 防除冰桨叶加热及温度控制系统设计[J]. 机械制造与自动化, 2015, 44(4): 177-180. |
SUO J R, LIU Z, GAO C S. Design of heating and temperature control system for anti/de-icer paddles[J]. Machine Building & Automation, 2015, 44(4): 177-180 (in Chinese). | |
43 | 吴海涛, 彭华乔, 张帆, 等. 非牛顿型飞机除冰/防冰液黏度影响因素分析[J]. 精细与专用化学品, 2017, 25(1): 18-21. |
WU H T, PENG H Q, ZHANG F, et al. Analysis on effective factors of non-newtonian de-icing/anti-icing fluids viscosity[J]. Fine and Specialty Chemicals, 2017, 25(1): 18-21 (in Chinese). | |
44 | COFFMAN J H. Review of helicopter icing protection systems[R]. 1983 |
45 | 杨常卫, 张功虎, 孙涛, 等. 黑鹰直升机旋翼桨叶防/除冰系统研究[J]. 直升机技术, 2011(1): 37-44. |
YANG C W, ZHANG G H, SUN T, et al. Development of black hawk helicopter rotor blade anti-/ de-icing system[J]. Helicopter Technique, 2011(1): 37-44 (in Chinese). | |
46 | RASHID T, LIANG H L, TAIMUR M, et al. Roll to roll coating of carbon nanotube films for electro thermal heating[J]. Cold Regions Science and Technology, 2021, 182: 103210. |
47 | 谌广昌, 纪双英, 赵文明, 等. 直升机旋翼除冰系统加热垫试验研究[J]. 航空工程进展, 2019, 10(2): 201-205, 211. |
CHEN G C, JI S Y, ZHAO W M, et al. Experimental study on heating pad of helicopter rotor deicing system[J]. Advances in Aeronautical Science and Engineering, 2019, 10(2): 201-205, 211 (in Chinese). | |
48 | CHEN L, ZHANG Y D, WU Q. Effect of graphene coating on the heat transfer performance of a composite anti-/ deicing component[J]. Coatings, 2017, 7(10): 158. |
49 | 邹小玲. 直升机旋翼防除冰设计与分析[J]. 直升机技术, 2009(3): 39-46. |
ZOU X L. The design and analysis of helicopter rotor anti-icing/deicing system[J]. Helicopter Technique, 2009(3): 39-46 (in Chinese). | |
50 | ZHAO Z H, CHEN H W, LIU X L, et al. Development of high-efficient synthetic electric heating coating for anti-icing/de-icing[J]. Surface and Coatings Technology, 2018, 349: 340-346. |
51 | ZHAO Z H, CHEN H W, LIU X L, et al. The development of electric heating coating with temperature controlling capability for anti-icing/de-icing[J]. Cold Regions Science and Technology, 2021, 184: 103234. |
52 | AL-KHALIL K, FERGUSON T, PHILLIPS D, et al. A hybrid anti-icing ice protection system[C]∥Proceedings of the 35th Aerospace Sciences Meeting and Exhibit. 1997. |
53 | 郑春涛. 复合式除冰技术研究[D]. 武汉: 华中科技大学, 2016. |
ZHENG C T. Researches on hybrid de-ice methods[D]. Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese). | |
54 | 郭艳亮. 复合式除冰控制技术及试验研究[D]. 武汉: 华中科技大学, 2017. |
GUO Y L. The control technique and experimental research for aircraft hybrid deicing[D]. Wuhan: Huazhong University of Science and Technology, 2017 (in Chinese). | |
55 | SENCZYSZYN S, BARNARD A R. Thermal and vibration induced rotor blade deicing using carbon nanotube thermophones[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2540. |
56 | 刘晓林, 朱彦曈, 王泽, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331. |
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese). | |
57 | 苗新宇. 热力机械复合式除冰系统能耗分析[J]. 航空科学技术, 2015, 26(6): 31-34. |
MIAO X Y. Energy consumption analysis of thermo-mechanical expulsion de-icing system[J]. Aeronautical Science & Technology, 2015, 26(6): 31-34 (in Chinese). | |
58 | PARK M H, HA J H, LA M, et al. Conducting super-hydrophobic thin film for electric heating applications[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(3): 1506-1510. |
59 | FORTIN G, ADOMOU M, PERRON J. Experimental study of hybrid anti-icing systems combining thermoelectric and hydrophobic coatings[C]∥SAE Technical Paper Series. 2011: 281-283. |
60 | ANTONINI C, INNOCENTI M, HORN T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1-2): 58-67. |
61 | STROBL T, STORM S, THOMPSON D, et al. Feasibility study of a hybrid ice protection system[J]. Journal of Aircraft, 2015, 52(6): 2064-2076. |
62 | STROBL T, THOMPSON D S, HORNUNG M. Feasibility study of a hybrid ice protection system based on passive removal of residual ice[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting. 2015. |
63 | DE PAUW D, DOLATABADI A. Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil[J]. Journal of Aircraft, 2017, 54(2): 490-499. |
64 | 朱宝. 低能耗超疏水电热蒙皮设计及防冰性能研究[M]. 西安:西北工业大学, 2018. |
ZHU B. Low power superhydrophobic electrothermal skin and its anti-icing performance [M]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
65 | CHEN L, ZHANG Y D, WU Q, et al. A novel anti/de-icing system combining heat expansion film and electric heating for helicopter rotor[C]∥2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway: IEEE Press, 2017: 1072-1076. |
66 | WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
67 | LIU X L, CHEN H W, ZHAO Z H, et al. Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications[J]. Surface and Coatings Technology, 2019, 374: 889-896. |
68 | 景向嵘, 程盼, 罗振兵, 等 . 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报, 2022, 43(S2): 727765. |
JING X R, CHENG P, LUO Z B, et al. Ice breaking characteristics and crack propagation law of arc discharge plasma actuator [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727765 (in Chinese). |
[1] | 郑峰婴, 沈志敏, 李雅琴, 徐楷钊, 王新华. 共轴高速直升机增益自适应多模式切换控制[J]. 航空学报, 2024, 45(9): 529088-529088. |
[2] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[3] | 孙大智, 陈希, 鲍为成, 卞威, 招启军. 高速直升机机身干扰对推力桨气动与噪声源特性的影响[J]. 航空学报, 2024, 45(9): 529142-529142. |
[4] | 刘昌昊, 曹义华, 梅晓萌, 汪茂胜, 张广林. 高速直升机运输效能评估[J]. 航空学报, 2024, 45(9): 530182-530182. |
[5] | 仇钰清, 李俨, 郎金溪, 刘育衔, 王重. 高速直升机过渡模态鲁棒自适应姿态控制[J]. 航空学报, 2024, 45(9): 529927-529927. |
[6] | 曾怡兰, 韩东, 刘壮壮, 周鑫. 高速飞行复合式直升机旋翼受上洗时的驱转特性[J]. 航空学报, 2024, 45(9): 529061-529061. |
[7] | 韩少强, 宋文萍, 韩忠华, 许建华. 高速共轴刚性旋翼非定常流动高精度数值模拟[J]. 航空学报, 2024, 45(9): 529064-529064. |
[8] | 王梓旭, 李攀, 鲁可, 朱振华, 陈仁良. 共轴刚性旋翼高速直升机配平策略优化设计[J]. 航空学报, 2024, 45(9): 529069-529069. |
[9] | 邓景辉. 高速直升机关键技术与发展[J]. 航空学报, 2024, 45(9): 529085-529085. |
[10] | 聂博文, 王亮权, 黄志银, 何龙, 杨仕鹏, 颜鸿涛, 章贵川. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848-529848. |
[11] | 王雪鹤, 柴春硕, 邢世龙, 樊枫, 黄水林. 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024, 45(9): 529960-529960. |
[12] | 李博, 王潇. 共轴双旋翼/尾推桨/传动耦合系统动力学建模与固有特性分析[J]. 航空学报, 2024, 45(9): 528945-528945. |
[13] | 刘琦, 史勇杰, 胡志远, 徐国华. 共轴刚性旋翼气动及噪声特性的参数影响分析[J]. 航空学报, 2024, 45(9): 528856-528856. |
[14] | 王晓乐, 孙萍, 顾鑫, 赵春宇, 黄震宇. 直升机声学超材料舱壁的低频多带隙降噪特性[J]. 航空学报, 2024, 45(6): 428901-428901. |
[15] | 杨梓霄, 李世尧, 魏晨, 李湛, 朱波. 基于低阶干扰估计器的欠驱动三自由度直升机鲁棒控制[J]. 航空学报, 2024, 45(1): 629056-629056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学