1 |
杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377.
|
|
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese).
|
2 |
Defense Advanced Research Projects Agency. Alpha dog fight trials go virtual for final event[EB/OL]. (2020-08-07) [2021-03-10]. :.
|
3 |
董一群, 艾剑良. 自主空战技术中的机动决策:进展与展望[J]. 航空学报, 2020, 41(S2): 724264.
|
|
DONG Y Q, AI J L. Decision making in autonomous air combat: review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724264 (in Chinese).
|
4 |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
|
5 |
SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550(7676): 354-359.
|
6 |
SILVER D, HUBERT T, SCHRITTWIESER J, et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play[J]. Science, 2018, 362(6419): 1140-1144.
|
7 |
JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
|
8 |
FAWZI A, BALOG M, HUANG A, et al. Discovering faster matrix multiplication algorithms with reinforcement learning[J]. Nature, 2022, 610(7930): 47-53.
|
9 |
SILVER D, SINGH S, PRECUP D, et al. Reward is enough[J]. Artificial Intelligence, 2021, 299: 103535.
|
10 |
VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575(7782): 350-354.
|
11 |
VINYALS O, EWALDS T, BARTUNOV S, et al. StarCraft II: A new challenge for reinforcement learning[DB/OL]. 2017:arXiv preprint:1708.04782.
|
12 |
OpenAI. OpenAI five[EB/OL]. 2018. .
|
13 |
BAKER B, KANITSCHEIDER I, MARKOV T M, et al. Emergent tool use from multi-agent autocurricula[DB/OL]. arXiv preprint:1909.07528, 2020.
|
14 |
OH I, RHO S, MOON S, et al. Creating pro-level AI for a real-time fighting game using deep reinforcement learning[J]. IEEE Transactions on Games, 2022, 14(2): 212-220.
|
15 |
KURNIAWAN B, VAMPLEW P, PAPASIMEON M, et al. An empirical study of reward structures for actor-critic reinforcement learning in air combat manoeuvring simulation[C]∥ Australasian Joint Conference on Artificial Intelligence. Cham: Springer, 2019: 54-65.
|
16 |
YANG Q M, ZHU Y, ZHANG J D, et al. UAV air combat autonomous maneuver decision based on DDPG algorithm[C]∥ 2019 IEEE 15th International Conference on Control and Automation (ICCA). Piscataway: IEEE Press, 2019: 37-42.
|
17 |
YANG Q M, ZHANG J D, SHI G Q, et al. Maneuver decision of UAV in short-range air combat based on deep reinforcement learning[J]. IEEE Access, 2019, 8: 363-378.
|
18 |
PIAO H Y, SUN Z X, MENG G L, et al. Beyond-visual-range air combat tactics auto-generation by reinforcement learning[C]∥ 2020 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2020: 1-8.
|
19 |
单圣哲, 杨孟超, 张伟伟, 等. 自主空战连续决策方法[J]. 航空工程进展, 2022, 13(5): 47-58.
|
|
SHAN S Z, YANG M C, ZHANG W W, et al. Continuous decision-making method for autonomous air combat[J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 47-58 (in Chinese).
|
20 |
SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M]. 2nd Ed.Cambridge: MIT Press, 2018.
|
21 |
MATHEW A, AMUDHA P, SIVAKUMARI S. Deep learning techniques: an overview[C]∥International Conference on Advanced Machine Learning Technologies and Applications. Singapore: Springer, 2021: 599-608.
|
22 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[DB/OL]. arXiv preprint: 1312.5602, 2013.
|
23 |
Github. Unity technologies[EB/OL].(2022-12-14). .
|
24 |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms [DB/OL]. arXiv preprint: 1707.06347, 2017.
|
25 |
VON NEUMANN J, MORGENSTERN O. Theory of games and economic behavior: 60th anniversary commemorative edition[M]. Princeton: Princeton University Press, 2007.
|
26 |
SHAPLEY L S. Stochastic games[J]. Proceedings of the National Academy of Sciences of the United States of America, 1953, 39(10): 1095-1100.
|
27 |
LITTMAN M L. Markov games as a framework for multi-agent reinforcement learning[M]∥KAUFMANN M. Machine learning proceedings. Amsterdam: Elsevier, 1994: 157-163.
|
28 |
BROWN G W. Iterative solution of games by fictitious play[J]. Activity Analysis of Production and Allocation, 1951, 13(1): 374-376.
|
29 |
SCHRITTWIESER J, ANTONOGLOU I, HUBERT T, et al. Mastering Atari, Go, chess and shogi by planning with a learned model[J]. Nature, 2020, 588(7839): 604-609.
|
30 |
ZHA D C, XIE J R, MA W Y, et al. DouZero: Mastering DouDizhu with self-play deep reinforcement learning[DB/OL]. arXiv preprint: 2106.06135, 2021.
|
31 |
BANSAL T, PACHOCKI J, SIDOR S, et al. Emergent complexity via multi-agent competition[DB/OL]. arXiv preprint: 1710.03748, 2017.
|
32 |
JADERBERG M, CZARNECKI W M, DUNNING I, et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning[J]. Science, 2019, 364(6443): 859-865.
|
33 |
JULIANI A, BERGES V P, VCKAY E, et al. Unity: a general platform for intelligent agentsV[DB/OL]. arXiv preprint: 1809.02627, 2020.
|
34 |
BONANNI P. The art of the kill: A comprehensive guide to modern air combat[M]. Boulder: Spectrum HoloByte, 1993.
|
35 |
吴文海, 周思羽, 高丽, 等. 基于导弹攻击区的超视距空战态势评估改进[J]. 系统工程与电子技术, 2011, 33(12): 2679-2685.
|
|
WU W H, ZHOU S Y, GAO L, et al. Improvements of situation assessment for beyond-visual-range air combat based on missile launching envelope analysis[J]. Systems Engineering and Electronics, 2011, 33(12): 2679-2685 (in Chinese).
|
36 |
YANG Y D, WANG J. An overview of multi-agent reinforcement learning from game theoretical perspective[DB/OL]. arXiv preprint: 2011.00583v3, 2021.
|
37 |
SCHULMAN J, MORITZ P, LEVINE S, et al. High-dimensional continuous control using generalized advantage estimation[DB/OL]. arXiv preprint: 1506.02438, 2015.
|
38 |
Technologies Unity. Unity ML-agents toolkit[EB/OL]. (2023-07-10).
|
39 |
JADERBERG M, CZARNECKI W M, DUNNING I, et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning[J]. Science, 2019, 364(6443): 859-865.
|
40 |
Wikipedia. Elo rating system[EB/OL]. 2021. .
|
41 |
Github.NWPU-SSZ[EB/OL].(2023-08-28). .
|