1 |
杨帆, 李小林, 刘小波, 等. 基于特征线理论的超声速进气道压缩面设计研究[J]. 空天防御, 2019, 2(1): 22-28.
|
|
YANG F, LI X L, LIU X B, et al. Investigation on the supersonic inlet compression surface design based on the MOC method[J]. Air & Space Defense, 2019, 2(1): 22-28 (in Chinese).
|
2 |
HUANG G P, ZHOU M A, CHEN J E, et al. A new combined design of inlet and forebody for high-speed vehicle[C]∥Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
|
3 |
BERENS T M, BISSINGER N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 30-36.
|
4 |
姚源, 陈萱. 美国发布SR-72高超声速飞机概念[J]. 中国航天, 2013(12): 39-41.
|
|
YAO Y, CHEN X. The United States released the concept of SR-72 hypersonic aircraft[J]. Aerospace China, 2013(12): 39-41 (in Chinese).
|
5 |
WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X─A reusable hypersonic test bed[C]∥Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
|
6 |
BISSINGER N C, BLAGOVESHCHENSKY N A, GUBANOV A A, et al. Improvement of forebody/inlet integration for hypersonic vehicle[J]. Aerospace Science and Technology, 1998, 2(8): 505-514.
|
7 |
HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994.
|
8 |
VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5): 181-191.
|
9 |
易军, 肖洪, 商旭升. 两种高超声速一体化构型的气动性能对比分析[J]. 航空工程进展, 2011, 2(3): 305-311.
|
|
YI J, XIAO H, SHANG X S. Aerodynamic performance research of two integrated hypersonic configurations[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3): 305-311 (in Chinese).
|
10 |
张孙. 类X-43A高超声速飞行器气动力特性及其全流道流动特征的研究[D]. 南京: 南京航空航天大学, 2007.
|
|
ZHANG S. Investigation of aerodynamic performance and inner flow characteristics of a hypersonic vehicle like X-43A[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
|
11 |
HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]∥Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
|
12 |
VAN WIE D, MÖLDER S. Applications of Busemann inlet designs for flight at hypersonic speeds[C]∥1992 Aerospace Design Conference. Reston: AIAA, 1992.
|
13 |
MCINTOSH K A, LINTON M, RUMPFKEIL M P, et al. Experimental and computational study of generic busemann inlets[C]∥Proceedings of the AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
|
14 |
BUSEMANN A. Die achsensymmetrische kegelige überschallströmung [J]. Luftfahrtforschung, 1942, 19(4): 137-144.
|
15 |
ZUO F Y, MÖLDER S. Flow quality in an M-Busemann wavecatcher intake[J]. Aerospace Science and Technology, 2022, 121: 107376.
|
16 |
何家祥, 金东海. 基于Busemann压升规律的可控消波内转基准流场设计[J]. 航空动力学报, 2017, 32(5): 1168-1175.
|
|
HE J X, JIN D H. Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5): 1168-1175 (in Chinese).
|
17 |
郑晓刚, 朱呈祥, 尤延铖. 基于局部偏转吻切方法的多级压缩乘波体设计[J]. 力学学报, 2022, 54(3): 601-611.
|
|
ZHENG X G, ZHU C X, YOU Y C. Design of multistage compression waverider based on the localturning osculating cones method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 601-611 (in Chinese).
|
18 |
刘嘉, 王发民. 乘波前体构型设计与压缩性能分析[J]. 工程力学, 2003, 20(6): 130-134.
|
|
LIU J, WANG F M. Waverider configuration design and forebody compressibility analysis[J]. Engineering Mechanics, 2003, 20(6): 130-134 (in Chinese).
|
19 |
乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10): 122078.
|
|
QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122078 (in Chinese).
|
20 |
SAHEBY E B, HUANG G P, HAYS A. Design of hypersonic forebody with submerged bump[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(9): 3153-3169.
|
21 |
吕侦军, 王江峰, 伍贻兆, 等. 多级压缩锥导乘波体设计与分析[J]. 宇航学报, 2015, 36(5): 518-523.
|
|
LYU Z J, WANG J F, WU Y Z, et al. Design and analysis of multistage compression cone-derived waverider configuration[J]. Journal of Astronautics, 2015, 36(5): 518-523 (in Chinese).
|
22 |
吕侦军. 水平起降高超声速运载器气动布局设计技术研究[D]. 南京: 南京航空航天大学, 2015.
|
|
LYU Z J. Research on aerodynamic configuration design technology of horizontal takeoff and landing hypersonic launch vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese).
|
23 |
贺旭照, 倪鸿礼. 密切曲面锥乘波体: 设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082.
|
|
HE X Z, NI H L. Osculating curved cone (OCC) waverider: Design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese).
|
24 |
贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6): 1270-1276.
|
|
HE X Z, QIN S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6): 1270-1276 (in Chinese).
|
25 |
XUE L S, CHENG C, WANG C P, et al. An integration method based on a novel combined flow for aerodynamic configuration of strutjet engine[J]. Chinese Journal of Aeronautics, 2021, 34(9): 156-167.
|
26 |
LI Y Q, ZHENG X G, SHI C G, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept[J]. Aerospace Science and Technology, 2020, 107: 106266.
|
27 |
陈立立. 参数化高超声速巡航飞行器组合布局设计与气动优化分析[D]. 长沙: 国防科技大学, 2019.
|
|
CHEN L L. Combined configuration design and aerodynamic optimization analysis of hypersonic cruise vehicle with parametrization[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
|
28 |
CHEN L L, GUO Z, DENG X L, et al. Waverider configuration design with variable shock angle[J]. IEEE Access, 2019, 7: 42081-42093.
|
29 |
罗文莉, 李道春, 向锦武. 吸气式高超声速飞行器大迎角气动特性分析[J]. 航空学报, 2015, 36(1): 223-231.
|
|
LUO W L, LI D C, XIANG J W. Aerodynamic characteristics analysis of air-breathing hypersonic vehicles at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 223-231 (in Chinese).
|
30 |
陈立立, 郭正, 邓小龙, 等. 一种新型乘波体设计方法研究[J]. 航空工程进展, 2019, 10(5): 673-680, 690.
|
|
CHEN L L, GUO Z, DENG X L, et al. Investigation on a novel waverider design method[J]. Advances in Aeronautical Science and Engineering, 2019, 10(5): 673-680, 690 (in Chinese).
|
31 |
ANSYS Inc. FLUENT theory guide[M]. Canonsburg: ANSYS Inc., 2017.
|
32 |
TAKASHIMA N, LEWIS M J. Navier-Stokes computation of a viscous optimized waverider[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 383-391.
|