收稿日期:
2023-02-21
修回日期:
2023-03-24
接受日期:
2023-05-06
出版日期:
2023-12-25
发布日期:
2023-05-12
通讯作者:
聂祥樊
E-mail:niexiangfan_kgd@126.com
基金资助:
Xiangfan NIE1(), Yang LI1, Yazhou WANG1, Quanhong WAN2, Weifeng HE1
Received:
2023-02-21
Revised:
2023-03-24
Accepted:
2023-05-06
Online:
2023-12-25
Published:
2023-05-12
Contact:
Xiangfan NIE
E-mail:niexiangfan_kgd@126.com
Supported by:
摘要:
飞机梁、框、壁板等承力结构广泛采用铝合金、钛合金等轻质合金,且孔、槽、窝、连接等局部区域存在应力集中、工作应力大等问题,容易导致服役过程中在交变载荷作用下发生疲劳裂纹故障,制约飞机结构服役寿命,甚至影响飞行安全。激光冲击强化是一种新型表面塑性强化技术,可在不更换材料和不改变结构尺寸的前提下,通过材料表层内预制残余压应力和改善微观组织,显著提升其疲劳性能,现已在美军F-22、F-35等飞机上实现了工程应用。重点阐述含孔、焊接、含倒角和高承载等典型飞机结构激光冲击强化研究进展及有待解决的问题,分析并总结近年来飞机结构激光冲击强化研究历程与发展特点,从设备、机理、工艺和工程应用等方面进行研究展望。通过系统性研究进展和梳理技术问题,明确未来工程应用所需的理论支撑和关键技术,促进相关创新链、产业链快速发展与协同合作,推动激光冲击强化技术在中国军民用飞机结构抗疲劳制造与延寿修理上的规模化应用。
中图分类号:
聂祥樊, 李阳, 王亚洲, 万全红, 何卫锋. 飞机结构激光冲击强化研究进展与展望[J]. 航空学报, 2023, 44(24): 28595-028595.
Xiangfan NIE, Yang LI, Yazhou WANG, Quanhong WAN, Weifeng HE. Research progress and prospect of laser shock peening technology in aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 28595-028595.
表 1
飞机材料/结构激光冲击强化影响规律
结构 | 材料 | 功率密度/ (GW·cm-2) | 次数 | 搭接率 | 表面残余应力/MPa | 影响 深度/mm | 疲劳性能 | 文献 |
---|---|---|---|---|---|---|---|---|
含孔结构 | 7050-T7451 | 1.41 | 2 | 50% | 应力比R=0.1,应力水平为195 MPa,疲劳寿命增幅为38.92% | [ | ||
6.01 | 应力比R=0.1,应力水平为195 MPa,疲劳寿命增幅为-32.17% | |||||||
7050-T7451 | 3.77 | 2 | 50% | -441 | 1.55 | 应力比R=0.1,当应力水平为165.8、195.0、275.4 MPa时,疲劳寿命分别提高了4.51倍、2.16倍、1.16倍 | [ | |
AA2024-T3 | 4 | 1 | 50% | 应力比R=0.1,应力水平为110 MPa,疲劳寿命提高了2.1倍 | [ | |||
Ti-17 | 10.61 | 3 | 50% | -304 | ~0.5 | 应力比R=0.1,应力水平为450 MPa,疲劳寿命提高了330% | [ | |
TC4-DT | 10.55 | 2 | 63% | ~-420 | ~0.9 | 应力比R=0.1,当应力水平为300、350、400 MPa时,疲劳寿命分别提高了750.3%、277.2%、108.2% | [ | |
焊接结构 | 7050-T7451 | 13.26 | 1 | 50% | 应力比R=0.1,当应力水平为200、250、300 MPa时,疲劳寿命分别提高了30%、27%、5% | [ | ||
AA6056-T6 | 25(方形光斑) | 1 | 0% | ~-250 | ~2 | 应力比R=0.1,疲劳循环次数为107,疲劳极限提高了43% | [ | |
TC4 | 13.26 | 1 | 40% | -564.37 | 应力比R=0.1,应力水平为520 MPa,疲劳寿命增幅为2.77~8.15倍 | [ | ||
含倒角结构 | 7050-T7451 | 4(方形光斑) | 3 | -339 | 2.44 | 应力比R=0.1,应力水平为415 MPa,疲劳寿命提高了2.3倍 应力比R=0.1,疲劳循环次数为106,疲劳极限提高了41% | [ | |
6061-T6 | 4 | 1 | 70% | -9 | >1.8 | [ | ||
6 | -13 | >1.8 | ||||||
2060-T8 | 1.06 | 1 | 50% | -450 | 1 | [ | ||
2024-T351 | 5.31 | 2 | 50% | ~-320 | ~1.3 | 应力比R=0.1,疲劳载荷最大值为4.5 kN,疲劳裂纹扩展寿命提高了2.54倍 | [ | |
高承载结构 | Hy-Tuf钢 | 10(方形光斑) | 3 | 3% | ~-800 | 谱载条件下,疲劳寿命提高了271% | [ |
1 | 李应红,何卫峰. 激光冲击强化理论与技术[M]. 北京: 科学出版社, 2013. |
LI Y H, HE W F. Laser shock peening theory and technology[M]. Beijing: Science Press, 2013 (in Chinese). | |
2 | 彭兆春. 基于疲劳损伤累积理论的结构寿命预测与时变可靠性分析方法研究[D]. 成都: 电子科技大学, 2017. |
PENG Z C. Research on methods for structural life prediction and time-dependent reliability analysis using cumulative fatigue damage theories[D]. Chengdu: University of Electronic Science and Technology of China, 2017 (in Chinese). | |
3 | YANG S, ZENG W, YANG J S. Characterization of shot peening properties and modelling on the fatigue performance of 304 austenitic stainless steel[J]. International Journal of Fatigue, 2020, 137: 105621. |
4 | MARTINS A M, LEAL C A A, CAMPIDELLI A F V, et al. Assessment of the temperature distribution in deep rolling of hardened AISI 4140 steel[J]. Journal of Manufacturing Processes, 2022, 73: 686-694. |
5 | PANIN A V, KAZACHENOK M S, DMITRIEV A I, et al. The effect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension[J]. Materials Science and Engineering: A, 2022, 832: 142458. |
6 | YUAN X L, LI C Y. An engineering high cycle fatigue strength prediction model for low plasticity burnished samples[J]. International Journal of Fatigue, 2017, 103: 318-326. |
7 | SUN R J, LI L H, GUO W, et al. Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J]. Materials Science and Engineering: A, 2018, 737: 94-104. |
8 | HATAMLEH O, LYONS J, FORMAN R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue, 2007, 29(3): 421-434. |
9 | RUSCHAU J J, JOHN R, THOMPSON S R, et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium[J]. International Journal of Fatigue, 1999, 21: 199-209. |
10 | PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering: A, 1996, 210(1-2): 102-113. |
11 | CLAUER A H, LAHRMAN D F. Laser shock processing as a surface enhancement process[J]. Key Engineering Materials, 2001, 197: 121-144. |
12 | RUBIO-GONZÁLEZ C, OCAÑA J L, GOMEZ-ROSAS G, et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science and Engineering: A, 2004, 386(1-2): 291-295. |
13 | FAIRAND B P, WILCOX B A, GALLAGHER W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9): 3893-3895. |
14 | BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates[J]. International Journal of Plasticity, 2004, 20(11): 1983-2006. |
15 | FAN Y, WANG Y, VUKELIC S, et al. Wave-solid interactions in laser-shock-induced deformation processes[J]. Journal of Applied Physics, 2005, 98(10): 104904. |
16 | LOOMIS E, PERALTA P, SWIFT D, et al. Cross-sectional TEM studies of plastic wave attenuation in shock loaded NiAl[J]. Materials Science and Engineering: A, 2006, 437(2): 212-221. |
17 | HATAMLEH O. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints[J]. International Journal of Fatigue, 2009, 31(5): 974-988. |
18 | YE C, SUSLOV S, KIM B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025. |
19 | BROCKMAN R A, BRAISTED W R, OLSON S E, et al. Prediction and characterization of residual stresses from laser shock peening[J]. International Journal of Fatigue, 2012, 36(1): 96-108. |
20 | FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784. |
21 | CELLARD C, RETRAINT D, FRANÇOIS M, et al. Laser shock peening of Ti-17 titanium alloy: influence of process parameters[J]. Materials Science and Engineering: A, 2012, 532: 362-372. |
22 | SANO Y, OBATA M, KUBO T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering: A, 2006, 417(1-2): 334-340. |
23 | 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 41(9): 54-59. |
GE M Z, XIANG J Y, ZHANG Y K. Effect of laser shock processing on mechanical properties of AZ31B magnesium alloy[J]. Journal of Materials Engineering, 2013, 41(9): 54-59 (in Chinese). | |
24 | WANG X D, LI Y H, LI Q P, et al. Property and thermostablity study on TC6 titanium alloy nanostructure processed by LSP[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(1): 68-76. |
25 | LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362. |
26 | LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994. |
27 | 张永康, 周立春, 任旭东, 等. 激光冲击TC4残余应力场的试验及有限元分析[J]. 江苏大学学报(自然科学版), 2009, 30(1): 10-13, 18. |
ZHANG Y K, ZHOU L C, REN X D, et al. Experiment and finite element analysis on residual stress field in laser shock processing TC4 titanium alloy[J]. Journal of Jiangsu University (Natural Science Edition), 2009, 30(1): 10-13, 18 (in Chinese). | |
28 | 张宏,唐亚新,余承业,等. 激光冲击处理对2024铝合金疲劳性能的影响[J]. 金属热处理学报, 1999, 20(2): 59-64. |
ZHANG H, TANG Y X, YU C Y, et al. The effects of laser shock processing on the fatigue properties of 2024 aluminum alloy[J]. Transactions of Metal Heat Treatment, 1999, 20(2): 59-64 (in Chinese). | |
29 | 廖培育, 王声波, 盛晶晶, 等. 实验研究脉冲强激光在钛合金靶中诱导的冲击波[J]. 应用激光, 2007, 27(2): 110-112. |
LIAO P Y, WANG S B, SHENG J J, et al. Experimental study of high-power pulsed laser induced shock waves in Ti alloy target[J]. Applied Laser, 2007, 27(2): 110-112 (in Chinese). | |
30 | ALTENBERGER I, STACH E A, LIU G, et al. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening[J]. Scripta Materialia, 2003, 48(12): 1593-1598. |
31 | LIN B, LUPTON C, SPANRAD S, et al. Fatigue crack growth in laser-shock-peened Ti-6Al-4V aerofoil specimens due to foreign object damage[J]. International Journal of Fatigue, 2014, 59: 23-33. |
32 | GANESH P, SUNDAR R, KUMAR H, et al. Studies on laser peening of spring steel for automotive applications[J]. Optics and Lasers in Engineering, 2012, 50(5): 678-686. |
33 | DANE C B, HARRIS F, LAO E, et al. Advanced beam delivery for mobile laser peening[C]∥Proceedings of the 2nd International Conference on Laser Peening. San Francisco: Metal Improvement Company, 2010. |
34 | JENSEN D. Adaptation of LSP capability for use on F-22 raptor primary structure at an aircraft modification depot[C]∥Proceedings of the 2nd International Conference on Laser Peening. San Francisco: Metal Improve-ment Company, 2010. |
35 | LEAP M J, RANKIN J, HARRISON J, et al. Effects of laser peening on fatigue life in an arrestment hook shank application for naval aircraft[J]. International Journal of Fatigue, 2011, 33(6): 788-799. |
36 | RANKIN J, RACANELLI T, CAMPBELL J, et al. Laser peening for enhanced fatigue lifetime of navy aircraft[C]∥Proceedings of the 2013 Aircraft Structural Integrity Program Conference, 2013. |
37 | CARLSON S. Laser shock peening (LSP) on F-35 critical bulkheads[C]∥Proceedings of the 2018 Aircraft Structural Integrity Program Conference, 2018. |
38 | CARUSO P. Structural certification of laser peening for F-35 safety critical bulkheads[C]∥Proceedings of the 2017 Aircraft Structural Integrity Program Conference, 2017. |
39 | CARLSON S. Qualification and Implementation of laser shock peening on F-35 & lessons learned[C]∥Proceedings of the 2020 Aircraft Structural Integrity Program Conference, 2020. |
40 | 邹世坤. 激光冲击强化技术[M]. 北京: 国防工业出版社, 2021. |
ZOU S K. Laser shock peening technology[M]. Beijing: National Defense Industry Press, 2021 (in Chinese). | |
41 | 李鑫. 小孔结构激光冲击与超声复合强化及抗疲劳研究[D]. 镇江: 江苏大学, 2019. |
LI X. Study on laser shock and ultrasonic composite strengthening and anti-fatigue of small hole structures[D]. Zhenjiang: Jiangsu University, 2019 (in Chinese). | |
42 | 李旭. 厚板小孔构件激光冲击及复合强化研究[D]. 镇江: 江苏大学, 2018. |
LI X. Research on laser shock processing and composite strengthening of thick plate with small holes[D]. Zhenjiang: Jiangsu University, 2018 (in Chinese). | |
43 | 李龙. 小孔构件激光冲击强化研究及其特性分析[D]. 马鞍山: 安徽工业大学, 2016. |
LI L. The research on laser shock peening and characteristic analysis of small hole components[D]. Maanshan: Anhui University of Technology, 2016 (in Chinese). | |
44 | 蒋尧. 激光冲击能量对铝合金小孔件应力分布及疲劳寿命影响的研究[D]. 镇江: 江苏大学, 2016. |
JIANG Y. Research of the effect of stress distribution and fatigue life on aluminum alloy with fastener hole subjected to laser shock energy[D]. Zhenjiang: Jiangsu University, 2016 (in Chinese). | |
45 | 李振. 基于激光冲击的钛合金小孔构件残余应力分布及疲劳性能研究[D]. 镇江: 江苏大学, 2016. |
LI Z. Investigation of residual stress and fatigue performance of titanium alloy part with hole by laser shock processing[D]. Zhenjiang: Jiangsu University, 2016 (in Chinese). | |
46 | 王珉. 抗疲劳制造原理与技术[M]. 南京: 江苏科学技术出版社, 1999. |
WANG M. Principle and technology of anti-fatigue manufacture[M]. Nanjing: Phoenix Science Press, 1999 (in Chinese). | |
47 | 姜银方,程志军,丁报,等. 单面激光冲击孔壁残余应力与疲劳失效[J]. 激光与红外, 2014, 44(10): 1090-1094. |
JIANG Y F, CHENG Z J, DING B, et al. Residual stress and fatigue failure in hole specimen by one side laser shock processing[J]. Laser & Infrared, 2014, 44(10): 1090-1094 (in Chinese). | |
48 | 罗懋钟,曹子文,代军义,等. 典型孔结构激光冲击强化残余应力场特征及有限元分析[J]. 航空制造技术, 2020, 63(17): 47-53. |
LUO M Z, CAO Z W, DAI J Y, et al. Stress field characteristics and finite element analysis of typical pore structures caused by laser shock peening[J]. Aeronautical Manufacturing Technology, 2020, 63(17): 47-53 (in Chinese). | |
49 | 帅仕祥,吴俊峰,车志刚,等. 激光冲击强化Al7050-T7451合金紧固孔的残余应力研究[J]. 航空制造技术, 2022, 65(9): 103-109. |
SHUAI S X, WU J F, CHE Z G, et al. Residual stresses of Al7050-T7451 alloy fastener holes with laser shock peening[J]. Aeronautical Manufacturing Technology, 2022, 65(9): 103-109 (in Chinese). | |
50 | 韩培培,焦清洋,权纯逸,等. 激光冲击强化对7050铝合金小孔结构残余应力和疲劳性能的影响[J]. 金属热处理, 2021, 46(11): 202-206. |
HAN P P, JIAO Q Y, QUAN C Y, et al. Effect of laser shock peening on residual stress and fatigue property of 7050 aluminium alloy with hole[J]. Heat Treatment of Metals, 2021, 46(11): 202-206 (in Chinese). | |
51 | ZHANG X Q, CHEN L S, YU X L, et al. Effect of laser shock processing on fatigue life of fastener hole[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 969-974. |
52 | JIANG Y F, JI B, GAN X D, et al. Study on the effect of laser peening with different power densities on fatigue life of fastener hole[J]. Optics & Laser Technology, 2018, 106: 311-320. |
53 | SUN R J, LI L H, ZHU Y, et al. Fatigue of Ti-17 titanium alloy with hole drilled prior and post to laser shock peening[J]. Optics & Laser Technology, 2019, 115: 166-170. |
54 | 姜银方,冯文龙,彭涛涛,等. 应力水平下的激光冲击小孔构件疲劳扩展研究[J]. 激光与红外, 2017, 47(10): 1205-1209. |
JIANG Y F, FENG W L, PENG T T, et al. Research on fatigue growth of laser peening hole specimen under stress level[J]. Laser & Infrared, 2017, 47(10): 1205-1209 (in Chinese). | |
55 | 赵勇, 姜银方, 彭涛涛, 等. 激光冲击强化铝合金小孔构件的疲劳寿命研究[J]. 航空制造技术, 2017, 60(13): 38-43. |
ZHAO Y, JIANG Y F, PENG T T, et al. Research on fatigue life of aluminum alloy with fastener hole by laser shock processing[J]. Aeronautical Manufacturing Technology, 2017, 60(13): 38-43 (in Chinese). | |
56 | 蒋尧, 姜银方, 李振, 等. 铝合金小孔件单双面激光冲击强化效果研究[J]. 激光技术, 2016, 40(1): 90-93. |
JIANG Y, JIANG Y F, LI Z, et al. Investigation of effect of one-side and two-side laser shock processing on aluminum alloy small-hole specimens[J]. Laser Technology, 2016, 40(1): 90-93 (in Chinese). | |
57 | 姜银方, 李娟, 潘禹, 等. 双面激光冲击次序对小孔件强化效果影响研究[J]. 激光技术, 2016, 40(1): 82-85. |
JIANG Y F, LI J, PAN Y, et al. Investigation of effect of two-side laser shock order on small-hole specimen strengthening[J]. Laser Technology, 2016, 40(1): 82-85 (in Chinese). | |
58 | TAN Y, WU G, YANG J M, et al. Laser shock peening on fatigue crack growth behaviour of aluminium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(8): 649-656. |
59 | YANG J M, HER Y C, HAN N L, et al. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes[J]. Materials Science and Engineering: A, 2001, 298(1-2): 296-299. |
60 | SIKHAMOV R, FOMIN F, KLUSEMANN B, et al. The influence of laser shock peening on fatigue properties of AA2024-T3 alloy with a fastener hole[J]. Metals, 2020, 10(4): 495. |
61 | IVETIC G, MENEGHIN I, TROIANI E, et al. Fatigue in laser shock peened open-hole thin aluminium specimens[J]. Materials Science and Engineering: A, 2012, 534: 573-579. |
62 | LIU P, SUN S Y, XU S B, et al. Microstructure and properties in the weld surface of friction stir welded 7050-T7451 aluminium alloys by laser shock peening[J]. Vacuum, 2018, 152: 25-29. |
63 | 黄潇,曹子文,常明,等. 激光冲击强化对TC4钛合金单面修饰激光焊接接头疲劳性能的影响[J]. 中国机械工程, 2018, 29(1): 104-109. |
HUANG X, CAO Z W, CHANG M, et al. Effects of laser shock processing on fatigue performances of TC4 titanium alloy single-side laser modification welding joints[J]. China Mechanical Engineering, 2018, 29(1): 104-109 (in Chinese). | |
64 | 苏纯, 周建忠, 黄舒, 等. 激光冲击强化对6061-T6铝合金TIG焊接接头疲劳性能的影响[J]. 激光与光电子学进展, 2015, 52(6): 061403. |
SU C, ZHOU J Z, HUANG S, et al. Influence of laser shock processing on fatigue properties of 6061-T6 aluminum alloy TIG welded joints[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061403 (in Chinese). | |
65 | JIA W J, ZHAO H Z, ZAN Y X, et al. Effect of heat treatment and laser shock peening on the microstructures and properties of electron beam welded Ti-6.5Al-1Mo-1V-2Zr joints[J]. Vacuum, 2018, 155: 496-503. |
66 | KASHAEV N, USHMAEV D, VENTZKE V, et al. On the application of laser shock peening for retardation of surface fatigue cracks in laser beam-welded AA6056[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(7): 1500-1513. |
67 | LUONG H, HILL M R. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Materials Science and Engineering: A, 2010, 527(3): 699-707. |
68 | HU Y X, CHENG H, YU J H, et al. An experimental study on crack closure induced by laser peening in pre-cracked aluminum alloy 2024-T351 and fatigue life extension[J]. International Journal of Fatigue, 2020, 130: 105232. |
69 | VAN ASWEGEN D C, POLESE C. Experimental and analytical investigation of the effects of laser shock peening processing strategy on fatigue crack growth in thin 2024 aluminium alloy panels[J]. International Journal of Fatigue, 2021, 142: 105969. |
70 | DHAKAL B, SWAROOP S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology, 2020, 282: 116640. |
71 | KELLER S, HORSTMANN M, KASHAEV N, et al. Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening[J]. International Journal of Fatigue, 2019, 124: 265-276. |
72 | PAVAN M, FURFARI D, AHMAD B, et al. Fatigue crack growth in a laser shock peened residual stress field[J]. International Journal of Fatigue, 2019, 123: 157-167. |
73 | BUSSE D, GANGULY S, FURFARI D, et al. Optimised laser peening strategies for damage tolerant aircraft structures[J]. International Journal of Fatigue, 2020, 141: 105890. |
74 | ZHENG X W, LUO P, YUE G Q, et al. Analysis of microstructure and high-temperature tensile properties of 2060 Al-Li alloy strengthened by laser shock peening[J]. Journal of Alloys and Compounds, 2021, 860: 158539. |
75 | LEAP M, RANKIN J, HARRISON J, et al. Fatigue lifetime improvement of arrestment hook shanks by application of laser peening[C]∥Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue. Dordrecht: Springer, 2009: 355-361. |
76 | 牛一虹, 刘波, 丁同超, 等. 机翼机身接头耳片接触分析[J]. 塑性工程学报, 2012, 19(5): 115-119. |
NIU Y H, LIU B, DING T C, et al. Contact analysis of wing-fuselage connection joint lug[J]. Journal of Plasticity Engineering, 2012, 19(5): 115-119 (in Chinese). | |
77 | IM J, GRANDHI R V, RO Y. Residual stress behaviors induced by laser peening along the edge of curved models[J]. Journal of Mechanical Science and Technology, 2012, 26(12): 3943-3952. |
78 | VASU A, GOBAL K, GRANDHI R V. A computational methodology for determining the optimum re-peening schedule to increase the fatigue life of laser peened aircraft components[J]. International Journal of Fatigue, 2015, 70: 395-405. |
79 | MACGILLIVRAY L K, DANE B, OSBORNE M, et al. F-22 laser shock peening depot transition and risk reduction[C]∥Proceedings of the 2010 Aircraft Structural Integrity Program Conference, 2010. |
80 | POLIN L, BUNCH J, CARUSO P, et al. F-22 program full scale component tests to validate the effects of laser shock peening[C]∥Proceedings of the 2011 Aircraft Structural Integrity Program Conference, 2011. |
[1] | 胡宪亮, 乔红超, 赵吉宾, 陆莹, 吴嘉俊, 杨玉奇. 激光冲击波对单晶合金抗热腐蚀性能的影响[J]. 航空学报, 2022, 43(4): 525591-525591. |
[2] | 贺小帆, 朱俊贤. 军用飞机结构耐久性严重谱编制与应用研究进展[J]. 航空学报, 2022, 43(12): 25070-025070. |
[3] | 高鑫, 李仁政, 王斌利, 李卫东, 赵中刚. 飞机结构件轮廓特征加工自动分区算法[J]. 航空学报, 2021, 42(7): 625346-625346. |
[4] | 李茜, 张福禄, 赵子华. 镍基单晶/柱晶高温合金超高周疲劳研究进展[J]. 航空学报, 2021, 42(5): 524340-524340. |
[5] | 王连庆, 胡雅楠, 车志刚, 吴圣川. 激光冲击强化7075铝合金熔焊接头的疲劳性能[J]. 航空学报, 2021, 42(5): 524320-524320. |
[6] | 崔德刚, 鲍蕊, 张睿, 刘斌超, 欧阳天. 飞机结构疲劳与结构完整性发展综述[J]. 航空学报, 2021, 42(5): 524394-524394. |
[7] | 王鑫涛, 杜星. 飞机结构强度试验应急载荷限定系统[J]. 航空学报, 2020, 41(2): 223332-223332. |
[8] | 苟磊, 马玉娥, 杜永, 刘磊, 郭超, 李钢. 7050凹槽铝板激光冲击强化残余应力分布与疲劳寿命[J]. 航空学报, 2019, 40(12): 423096-423096. |
[9] | 熊青春, 王家序, 周青华. 融合机床精度与工艺参数的铣削误差预测模型[J]. 航空学报, 2018, 39(8): 421713-421713. |
[10] | 董安琪, 赵新青, 肇研. 纤维自动铺放工艺制备单向罐外固化复合材料的拉-拉疲劳性能[J]. 航空学报, 2018, 39(2): 421422-421422. |
[11] | 王燕礼, 朱有利, 曹强, 张小辉. 孔挤压强化技术研究进展与展望[J]. 航空学报, 2018, 39(2): 21336-021336. |
[12] | 张腾, 何宇廷, 谭申刚, 王新波, 张胜. 用于飞机结构选材的系列材料性能指标及其应用[J]. 航空学报, 2016, 37(10): 3170-3177. |
[13] | 贺小帆, 董颖豪, 李玉海, 刘文珽. 综合考虑载荷谱和结构特性分散的概率断裂力学方法[J]. 航空学报, 2015, 36(4): 1142-1149. |
[14] | 张腾, 何宇廷, 李昌范, 张海威, 侯波. 地面停放飞机局部温度环境研究[J]. 航空学报, 2015, 36(2): 538-547. |
[15] | 张腾, 何宇廷, 高潮, 李昌范, 邵青. 2A12-T4铝合金长期大气腐蚀损伤规律[J]. 航空学报, 2015, 36(2): 661-671. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学