[1] 高鑫, 李迎光, 张臣, 等. 飞机结构件内型转角一体加工刀轨生成方法[J]. 航空学报, 2014, 35(9):2660-2671. GAO X, LI Y G, ZHANG C, et al. An integrated machining tool path generation method for corner and profile of aircraft structural parts[J]. Acta Aeronautica et Astronautical Sinica, 2014, 35(9):2660-2671(in Chinese). [2] 隋少春, 许艾明, 黎小华, 等. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7):624173. SUI S C, XU A M, LI X H, et al. Fusion application of DT and AI for aviation intelligent manufacturing[J]. Acta Aeronautica et Astronautical Sinica, 2020, 41(7):624173(in Chinese). [3] 刘长青, 李迎光, 王鹏程, 等. 复杂结构件数控编程加工特征用户自定义方法[J]. 航空学报, 2017, 38(6):420735. LIU C Q, LI Y G, WANG P C, et al. A user defined method for machining features in NC programming of complex structural parts[J]. Acta Aeronautica et Astronautical Sinica, 2017, 38(6):420735(in Chinese). [4] 施建飞, 李迎光, 刘旭, 等. 基于属性边点图的飞机结构件筋特征识别方法[J]. 计算机集成制造系统, 2014, 20(3):521-529. SHI J F, LI Y G, LIU X, et al. Rib feature recognition method for aircraft structural parts based on vertex attributed adjacency graph[J]. Computer Integrated Manufacturing Systems, 2014, 20(3):521-529(in Chinese). [5] 刘雪梅, 周易, 黄剑锋, 等. 基于制造资源的复杂箱体零件加工特征识别方法[J]. 计算机集成制造系统, 2015, 21(12):3166-3173. LIU X M, ZHOU Y, HUANG J F, et al. Machining feature recognition method for complicated boxy parts based on manufacturing resources[J]. Computer Integrated Manufacturing Systems, 2015, 21(12):3166-3173(in Chinese). [6] 周敏, 郑国磊, 郑祖杰. 基于模糊推理的飞机结构件平顶筋自动识别方法[J]. 浙江大学学报(自然科学版), 2018, 52(3):591-598. ZHOU M, ZHENG G L, ZHENG Z J. Automatic recognition method based on fuzzy inference for planar-top rib in aircraft structural parts[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(3):591-598(in Chinese). [7] LI Y G, DING Y F, MOU W P, et al. Feature recognition technology for aircraft structural parts based on a holistic attribute adjacency graph[J]. Proceedings of the Institution of Mechanical Engineers, Part B Journal of Engineering Manufacture, 2010, 224(2):271-278. [8] LIU C Q, LI Y G, LI Z Y. A machining feature definition approach by using two-times unsupervised clustering based on historical data for process knowledge reuse[J]. Journal of Manufacturing Systems, 2018, 49:16-24. [9] 张禹, 董小野, 李东升, 等. 基于STEP和改进神经网络的STEP-NC制造特征识别方法[J]. 航空学报, 2019, 40(7):422687. ZHANG Y, DONG X Y, LI D S, et al. Method for STEP-NC manufacturing feature recognition based on STEP and improved neural network[J]. Acta Aeronautica et Astronautical Sinica, 2019, 40(7):422687(in Chinese). [10] XU S X, ANWER N, QIAO L H. Feature recognition for virtual machining[C]//The 21st International Conference on Industrial Engineering and Engineering Management 2014(IEEM 2014), 2014. [11] YAN X, YAMAZAKI K, LIU J. Recognition of machining features and feature topologies from NC programs[J]. CAD Computer Aided Design, 2000, 32(10):605-616. [12] ZHANG Z, JAISWAL P, RAI R. FeatureNet:Machining feature recognition based on 3D Convolution Neural Network[J]. Computer Aided Design, 2018, 101:12-22. [13] 李春晖, 郑国磊, 陈树林. 飞机结构件加工域单元分层识别及构造方法[J]. 图学学报, 2014, 35(6):847-853. LI C H, ZHENG G L, CHEN S L. Slicingrecognition of machining volume unit for aircraft structural parts[J]. Journal of Graphics, 2014, 35(6):847-853(in Chinese). [14] 周刚, 邬义杰, 潘晓弘. 基于Z-map模型的加工区域边界抽取算法研究[J]. 中国图象图形学报, 2019, 13(1):156-162. ZHOU G, WU Y J, PAN X H. Machiningregion boundary extraction algorithm based on Z-map model[J]. Journal of Image and Graphics, 2019, 13(1):156-162(in Chinese). [15] 张鸣, 刘伟军, 杨红涛. 复杂型腔加工区域的自动识别[J]. 中国机械工程, 2010, 21(18):2224-2228. ZHANG M, LIU W J, YANG H T. Complexpocket milling region automatic identification method[J]. China Mechanical Engineering, 2010, 21(18):2224-2228(in Chinese). [16] 张石磊, 李迎光, 刘长青, 等. 基于环分析的飞机结构件槽特征腹板精加工区域自动创建方法[J]. 中国机械工程, 2013, 24(13):28-33. ZHANG S L, LI Y G, LIU C Q, et al. Loop-analysis-based automatic creation method for bottom finish machining region of pocket feature in aircraft structural parts[J]. China Mechanical Engineering, 2013, 24(13):28-33(in Chinese). [17] 郑祖杰, 周敏, 郑国磊, 等. 飞机结构件平顶筋顶面骨架分区计算方法[J]. 计算机集成制造系统, 2017, 23(11):2407-2413. ZHENG Z J, ZHOU M, ZHENG G L, et al. Skeleton computation method with sub-domain division for top planar surface of ribs in aircraft structural parts[J]. Computer Integrated Manufacturing Systems, 2017, 23(11):2407-2413(in Chinese). [18] HEO E Y, KIM D W, LEE J Y, et al. High speed pocket milling planning by feature-based machining area partitioning[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(4):706-713. [19] 刘少伟, 李迎光, 郝小忠, 等. 基于特征的蒙皮镜像铣加工残区刀轨优化方法[J]. 航空学报, 2016, 37(7):2295-2302. LIU S W, LI Y G, HAO X Z, et al, Feature-based uncut region tool path optimization method for skin parts machined by mirror milling system[J]. Acta Aeronautica et Astronautical Sinica, 2016, 37(7):2295-2302(in Chinese). [20] 牟文平,隋少春,李迎光. 飞机结构件智能数控加工关键技术研究现状[J]. 航空制造技术, 2015(13):56-59. MOU W P, SUI S C, LI Y G. Key technology for intelligent NC machining of aircraft structural parts[J]. Intelligent Manufacturing Technology for Aviation Industry, 2015(13):56-59(in Chinese). [21] ISO10303-224 Industrial automatic systems and integration-product data representation and exchange-application protocol:mechanical product definition for process planning using machining features[S]. 2006. |