1 |
王荣桥, 胡殿印. 发动机结构可靠性设计理论及应用[M]. 北京: 科学出版社, 2017.
|
|
WANG R Q, HU D Y. Theory and application of engine structural reliability design[M]. Beijing: Science Press, 2017 (in Chinese).
|
2 |
LIU X, HU D Y, WANG R Q, et al. Calibration and validation of fatigue lifetime model in complex structures based on multi-level data[J]. International Journal of Fatigue, 2022, 159: 106783.
|
3 |
姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003.
|
|
YAO W X. Fatigue life prediction of structures[M]. Beijing: National Defense Industry Press, 2003 (in Chinese).
|
4 |
PUN A. Three methods of calculating total life, cracks initiation, and crack growth[J]. MSC/FATIGUE design news, 2001, 56(24): 90-92.
|
5 |
TOPPER T H, WETZEL R M, MORROW J D. Neuber’s rule applied to fatigue of notched specimens[J]. Journal of Materials, 1967, 4: 200-209.
|
6 |
DOWLING N, BROSE W R, WILSON W K. Notched member fatigue life prediction by the local strain approach[J]. Advances in Engineering, 1977, 6: 55-84.
|
7 |
由美雁, 何雪浤, 谢里阳. 发动机轮盘模拟技术理论与方法[J]. 机械设计, 2007, 24(2): 62-64.
|
|
YOU M Y, HE X H, XIE L Y. Research on simulative technical theory and methodology of turbine rotor[J]. Journal of Machine Design, 2007, 24(2): 62-64 (in Chinese).
|
8 |
魏大盛, 冯俊淇, 马梦弟, 等. 航空发动机轮盘中心孔模拟试验件设计方法及试验验证[J]. 航空动力学报, 2022, 37(10): 2157-2166.
|
|
WEI D S, FENG J Q, MA M D, et al. Design method and test verification of simulated specimen of aeroengine disc center hole[J]. Journal of Aerospace Power, 2022, 37(10): 2157-2166 (in Chinese).
|
9 |
刘廷毅, 耿瑞, 张峻峰. 发动机轮盘低循环疲劳寿命试验模拟件设计[J]. 航空动力学报, 2008, 23(1): 32-36.
|
|
LIU T Y, GENG R, ZHANG J F. Design of simulated specimen for low-cycle fatigue of turbine engine disk[J]. Journal of Aerospace Power, 2008, 23(1): 32-36 (in Chinese).
|
10 |
赵福星, 杨兴宇. 发动机构件低循环疲劳模拟试验件设计方法[J]. 燃气涡轮试验与研究, 2003, 16(2): 50-52.
|
|
ZHAO F X, YANG X Y. A design method of simulation samples for aero-engine components used in low cycle fatigue test[J]. Gas Turbine Experiment and Research, 2003, 16(2): 50-52 (in Chinese).
|
11 |
LI Z L, XU H, SHI D Q, et al. Combined tensile and bending fatigue behavior and failure mechanism of a blade-like specimen at elevated temperature[J]. International Journal of Fatigue, 2022, 164: 107163.
|
12 |
况成玉, 刘奕斐. 某型航空发动机钛合金轮盘模拟疲劳试验件设计[J]. 装备制造技术, 2020(1):36-40.
|
|
KUANG C Y, LIU Y F. Design of simulated specimen for low-cycle fatigue of aircraft engine titanium alloy disk[J]. Equipment Manufacturing Technology, 2020(1):36-40. (in Chinese).
|
13 |
艾兴, 米栋, 李坚, 等. 叶根倒角模拟件设计[J]. 航空发动机, 2021, 47(2):58-62.
|
|
AI X, MI D, LI J, et al. Design of blade root fillet specimen[J]. Aeroengine, 2021, 47(2):58-62 (in Chinese).
|
14 |
TANAKA K. Engineering formulae for fatigue strength reduction due to crack-like notches[J]. International Journal of Fracture, 1983, 22(2): 39-46.
|
15 |
SHEPPARD S D. Field effects in fatigue crack initiation: long life fatigue strength[J]. Journal of Mechanical Design, 1991, 113(2):188-194.
|
16 |
TAYLOR D. Geometrical effects in fatigue: a unifying theoretical model[J]. International Journal of Fatigue, 1999, 21(5): 413-420.
|
17 |
张成成, 姚卫星. 典型缺口件疲劳寿命分析方法[J]. 航空动力学报, 2013, 28(6): 1223-1230.
|
|
ZHANG C C, YAO W X. Typical fatigue life analysis approaches for notched components[J]. Journal of Aerospace Power, 2013, 28(6): 1223-1230 (in Chinese).
|
18 |
陆山, 王春光, 陈军. 任意最大应力梯度路径轮盘模拟件设计方法[J]. 航空动力学报, 2010, 25(9): 2000-2005.
|
|
LU S, WANG C G, CHEN J. Design method of imitation specimen for engine disk with any maximum stress gradient path[J]. Journal of Aerospace Power, 2010, 25(9): 2000-2005 (in Chinese).
|
19 |
杨兴宇, 董立伟, 耿中行, 等. 某压气机轮盘榫槽低循环疲劳模拟件设计与试验[J]. 航空动力学报, 2008, 23(10): 1829-1834.
|
|
YANG X Y, DONG L W, GENG Z X, et al. Design and experimentation of simulation specimen for aero-engine compressor disk slot used in low cycle fatigue test[J]. Journal of Aerospace Power, 2008, 23(10): 1829-1834 (in Chinese).
|
20 |
郑小梅, 孙燕涛, 杨兴宇, 等. 某涡扇发动机高压涡轮盘螺栓孔低循环疲劳模拟件设计[J]. 航空动力学报, 2018, 33(10): 2351-2358.
|
|
ZHENG X M, SUN Y T, YANG X Y, et al. Design of low cycle fatigue simulating specimen for bolt holes of a turbofan engine high pressure turbine disc[J]. Journal of Aerospace Power, 2018, 33(10): 2351-2358 (in Chinese).
|
21 |
SU Y L, FAN Z L, WU W H, et al. Design method for the fatigue-simulating specimen of twin-web turbine disk[C]∥32nd International Council of the Aeronautical Sciences. Shanghai:[s.n.], 2021.
|
22 |
TAYLOR D. The theory of critical distances[J]. Engineering Fracture Mechanics, 2008, 75(7):1696-1705.
|
23 |
SUSMEL L. The theory of critical distances: a review of its applications in fatigue[J]. Engineering Fracture Mechanics, 2008, 75(7):1706-1724.
|
24 |
LIAO D, ZHU S P, QIAN G A. Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach[J]. International Journal of Mechanical Sciences, 2019, 160: 38-50.
|
25 |
WANG R Q, LIU H, HU D Y, et al. Evaluation of notch size effect on LCF life of TA19 specimens based on the stress gradient modified critical distance method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(8):1794-1809.
|
26 |
BEREMIN F M, PINEAU A, MUDRY F, et al. A local criterion for cleavage fracture of a nuclear pressure vessel steel[J]. Metallurgical Transactions A, 1983, 14(11): 2277-2287.
|
27 |
PLUVINAGE G. Fracture and fatigue emanating from stress concentrators[M]. Dordrecht: Kluwer Academic Publishers, 2003.
|
28 |
TAYLOR D, BOLOGNA P, KNANI K. Prediction of fatigue failure location on a component using a critical distance method[J]. International Journal of Fatigue, 2000, 22(9):735-742.
|
29 |
SUSMEL L, TAYLOR D. The theory of critical distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading[J]. International Journal of Fatigue, 2011, 33(7): 900-911.
|
30 |
SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4): 767-778.
|
31 |
BABAEI S, GHASEMI-GHALEBAHMAN A. Damage-based modification for fatigue life prediction under non-proportional loadings[J]. International Journal of Fatigue, 2015, 77:86-94.
|
32 |
XU S, ZHU S P, HAO Y Z, et al. A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys[J]. Engineering Failure Analysis, 2018, 93: 55-63.
|
33 |
高仁衡, 曹廷云, 沈莲, 等. 高温度梯度轮盘低循环疲劳试验件设计方法[J]. 航空发动机, 2021, 47(2): 74-78.
|
|
GAO R H, CAO T Y, SHEN L,et al. Design method for low cycle fatigue test pieces of large temperature gradient turbine disk[J]. Aeroengine, 2021, 47(2): 74-78 (in chinese).
|