1 |
BENI G, WANG J. Swarm intelligence in cellular robotic systems[M]∥In: DARIO P, SANDINI G, AEBISCHER P, editors. Robots and Biological Systems: Towards a New Bionics? Berlin: Springer, 1993: 703-712.
|
2 |
ZOMAYA A Y. Handbook of nature-inspired and innovative computing[M]. Berlin: Springer, 2006: 187-219.
|
3 |
PAN Y H. Heading toward artificial intelligence 2.0[J]. Engineering, 2016, 2(4): 409-413.
|
4 |
郭斌, 於志文. 人机物融合群智计算[J]. 中国计算机学会通迅, 2021, 17:35-40.
|
|
GUO B, YU Z. Crowd intelligence with the deep fusion of human, machine and IoT[J]. Communication of The Chinese Computer Society, 2021, 17:35-40 (in Chinese).
|
5 |
国务院. 新一代人工智能发展规划[EB/OL]. (2017-07-20) [2022-07-25]. .
|
|
Department State. Development plan of new generation AI[EB/OL]. (2017-07-20). [2022-07-25]. .
|
6 |
WU C, ZHANG T. Intelligent unmanned systems: Important achievements and applications of new generation artificial intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 649-651.
|
7 |
樊邦奎, 张瑞雨. 无人机系统与人工智能[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1523-1529.
|
|
FAN B K, ZHANG R Y. Unmanned aircraft system and artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1523-1529 (in Chinese).
|
8 |
SCHRANZ M, DI CARO G A, SCHMICKL T, et al. Swarm Intelligence and cyber-physical systems: Concepts, challenges and future trends[J]. Swarm and Evolutionary Computation, 2021, 60(2): 100762.
|
9 |
DORIGO M, THERAULAZ G, TRIANNI V. Swarm robotics: Past, present, and future[J]. Proceedings of the IEEE, 2021, 109(7): 1152-1165.
|
10 |
CHEN J, SUN J, WANG G. From unmanned systems to autonomous intelligent systems[J]. Engineering, 2022, 12: 16-19.
|
11 |
CHUNG S J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4): 837-855.
|
12 |
DORIGO M, THERAULAZ G, TRIANNI V. Reflections on the future of swarm robotics[J]. Science Robotics, 2020, 5(49): eabe4385.
|
13 |
HAMANN H. Swarm robotics: A formal approach[M]. Berlin: Springer, 2018:6-8.
|
14 |
武文亮, 周兴社, 沈博, 等. 集群机器人系统特性评价研究综述[J]. 自动化学报, 2022, 48(5): 1153-1172.
|
|
WU W L, ZHOU X S, SHEN B, et al. A review of swarm robotic systems property evaluation research[J]. Acta Automatica Sinica, 2022, 48(5): 1153-1172 (in Chinese).
|
15 |
ZHANG K, YANG Z, BASAR T. Multi-agent reinforcement learning: A selective overview of theories and algorithms[M]. Hanadbook of Reinforcement Learning and Control. Berlin: Springer, 2021:321-384.
|
16 |
KAELBLING L P. The foundation of efficient robot learning[J]. Science, 2020, 369(6506): 915-916.
|
17 |
TURING A M I Computing machinery and intelligence[J]. Mind, 1950, LIX(236): 433-460.
|
18 |
LI L, ZHENG N N, WANG F Y. A theoretical foundation of intelligence testing and its application for intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6297-6306.
|
19 |
国家自然科学基金委员会. 人工智能挑战性科学难题及颠覆性技术[EB/OL]. (2019-01-04) [2022-07-25]. .
|
|
National Natural Science Foundation. Challenging scientific problems and disruptive technologies of AI [EB/OL]. (2019-01-04) [2022-07-25]. (in Chinese).
|
20 |
国家标准化管理委员会, 中央网信办, 国家发展改革委, 等. 国家新一代人工智能标准体系建设指南[EB/OL]. (2020-07-27) [2022-07-25]. .
|
|
National Standardization Management Committee, Central Network Information Office, National Development and Reform Commission, et al. Construction guidelines of national new generation AI standard system[EB/OL]. (2020-07-27)[2022-07-25]. (in Chinese).
|
21 |
DEFENSE O. Unmanned aircraft systems roadmap 2000-2025[R]. Washington DC: Department of Defense, 2000.
|
22 |
DEFENSE O. Unmanned aerial vehicles roadmap 2002-2027[R]. Washington DC: Department of Defense, 2002.
|
23 |
DEFENSE O. Unmanned aircraft system roadmap 2005-2030[R]. Washington DC: Department of Defense, 2005.
|
24 |
CLOUGH B. Metrics, schmetrics! How do You track a UAV’s autonomy?: AIAA-2002-3499[R]. Reston: AIAA,2002.
|
25 |
SHOLES E. Evolution of a UAV autonomy classification taxonomy[C]∥ 2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-16.
|
26 |
SHERIDAN T B. Automation, authority and angst—revisited[C]∥1991 Proceedings of the Human Factors Society Annual Meeting. San Francisco: Human Factors & Ergonomics Society Press, 1991: 2-6.
|
27 |
HUANG H M, PAVEK K, ALBUS J, et al. Autonomy levels for unmanned systems (ALFUS) framework: An update[C]∥ Defense and Security. San Francisco: SPIE, 2005: 439-448.
|
28 |
YOUNG L, YETTER J, GUYNN M. System analysis applied to autonomy: Application to high-altitude long-endurance remotely operated aircraft: AIAA-2005-7103[R]. Reston: AIAA, 2005.
|
29 |
陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32(6): 1075-1083.
|
|
CHEN Z J, WEI J Z, WANG Y X, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1075-1083 (in Chinese).
|
30 |
王越超, 刘金国. 无人系统的自主性评价方法[J]. 科学通报, 2012, 57(15): 1290-1299.
|
|
WANG Y C, LIU J G. Autonomy evaluation method of unmanned system[J]. Chinese Science Bulletin, 2012, 57(15): 1290-1299 (in Chinese).
|
31 |
ZHANG T, LI Q, ZHANG C S, et al. Current trends in the development of intelligent unmanned autonomous systems[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 68-85.
|
32 |
段海滨, 范彦铭, 魏晨, 等. 群体熵: 一种群体智能行为的量化分析工具[J]. 中国科学(信息科学), 2020, 50(3): 335-346.
|
|
DUAN H B, FAN Y M, WEI C, et al. Swarm entropy: A quantitative analysis tool for swarm intelligence behaviors[J]. Scientia Sinica (Informationis), 2020, 50(3): 335-346 (in Chinese).
|
33 |
CHAITIN G J. Algorithmic information theory[M]. Cambridge: Cambridge University Press, 2004:179-196.
|
34 |
CHAITIN G J. Gödel’s theorem and information[J]. International Journal of Theoretical Physics, 1982, 21(12): 941-954.
|
35 |
LEGG S, HUTTER M. Universal intelligence: A definition of machine intelligence[J]. Minds and Machines, 2007, 17(4): 391-444.
|
36 |
CHOLLET F. On the measure of intelligence[DB/OL]. arXiv preprint: 1911.01547, 2019.
|
37 |
郑志明, 吕金虎, 韦卫, 等. 精准智能理论: 面向复杂动态对象的人工智能[J]. 中国科学: 信息科学, 2021, 51(4): 678-690.
|
|
ZHENG Z M, LYU J H, WEI W, et al. Refined intelligence theory: Artificial intelligence regarding complex dynamic objects[J]. Scientia Sinica (Informationis), 2021, 51(4): 678-690 (in Chinese).
|
38 |
罗杰, 姜鑫, 郭炳晖, 等. 群体智能系统的动力学模型与群体熵度量[J]. 中国科学: 信息科学, 2022, 52(1): 99-110.
|
|
LUO J, JIANG X, GUO B H, et al. Dynamic model and crowd entropy measurement of crowd intelligence system[J]. Scientia Sinica (Informationis), 2022, 52(1): 99-110 (in Chinese).
|
39 |
IANTOVICS L B, EMMERT-STREIB F, ARIK S. MetrIntMeas a novel metric for measuring the intelligence of a swarm of cooperating agents[J]. Cognitive Systems Research, 2017, 45: 17-29.
|
40 |
WANG X H, ZHANG Y, WANG L Z, et al. Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory[J]. Chinese Journal of Aeronautics, 2020, 33(1): 352-364.
|
41 |
HECKER J P, MOSES M E. Beyond pheromones: Evolving error-tolerant, flexible, and scalable ant-inspired robot swarms[J]. Swarm Intelligence, 2015, 9(1): 43-70.
|
42 |
杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377.
|
|
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese).
|
43 |
CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]∥ Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
|
44 |
ZHENG L M, YANG J C, CAI H, et al. MAgent: A many-agent reinforcement learning platform for artificial collective intelligence[DB/OL]. arXiv preprint: 1712.00600, 2017.
|