收稿日期:
2022-07-18
修回日期:
2022-10-20
接受日期:
2022-11-09
出版日期:
2022-11-21
发布日期:
2022-11-17
通讯作者:
王宇
E-mail:wangyu435@126.com
基金资助:
Yu WANG(), Hongda XU, Hao LI, Chang LI
Received:
2022-07-18
Revised:
2022-10-20
Accepted:
2022-11-09
Online:
2022-11-21
Published:
2022-11-17
Contact:
Yu WANG
E-mail:wangyu435@126.com
Supported by:
摘要:
对3种边界条件下旋转态双功能梯度碳纳米管增强复合材料(DFG-CNTRC)圆柱壳的行波振动特性开展了研究。首先,根据建立的DFG-CNTRC圆柱壳模型,分析了以金属-陶瓷功能梯度材料为基体的5种类型碳纳米管增强材料的性能参数。其次,基于Sanders壳体理论和传递矩阵方法,考虑转速影响,推导了任一截面状态向量的常微分方程组和整体传递矩阵关系。最后,对简支-简支(S-S)、固支-固支(C-C)和固支-自由(C-F)3种典型边界条件下的动力学微分方程进行求解计算,验证了理论分析的正确性。研究表明,科氏力和离心力效应引起行波频率出现了分离现象和增大趋势,边界条件和碳纳米管体积分数对行波振动特性的影响显著,而基体材料体积分数指数对振动特性的影响较小,长度和厚度对结构振动特性影响均不同。
中图分类号:
王宇, 徐宏达, 李昊, 李昌. 双功能梯度碳纳米管增强复合材料旋转圆柱壳的振动分析[J]. 航空学报, 2023, 44(13): 227827-227827.
Yu WANG, Hongda XU, Hao LI, Chang LI. Vibration analysis of rotating dual⁃functional gradient composite cylindrical shell reinforced with carbon nanotubes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 227827-227827.
表5
两端简支边界条件下分段数对固有频率的影响
类型 | 模态(m,n) | 固有频率/Hz | ||||
---|---|---|---|---|---|---|
n0=0 | n0=1 | n0=2 | n0=3 | n0=4 | ||
FG-UD | (1,5) | 1 261 | 1 569 | 1 552 | 1 549 | 1 549 |
(2,5) | 2 765 | 3 208 | 3 331 | 3 283 | 3 282 | |
DFG-X | (1,5) | 1 366 | 1 669 | 1 652 | 1 649 | 1 648 |
(2,5) | 2 881 | 3 343 | 3 471 | 3 421 | 3 420 | |
DFG-O | (1,5) | 1 214 | 1 533 | 1 516 | 1 512 | 1 512 |
(2,5) | 2 766 | 3 209 | 3 333 | 3 285 | 3 284 | |
DFG-V | (1,5) | 1 283 | 1 595 | 1 578 | 1 575 | 1 575 |
(2,5) | 2 826 | 3 279 | 3 405 | 3 356 | 3 355 | |
DFG-A | (1,5) | 1 295 | 1 602 | 1 585 | 1 582 | 1 581 |
(2,5) | 2 809 | 3 257 | 3 381 | 3 333 | 3 332 |
表6
两端固支边界条件下分段数对固有频率的影响
类型 | 模态(m,n) | 固有频率/Hz | ||||
---|---|---|---|---|---|---|
n0=0 | n0=1 | n0=2 | n0=3 | n0=4 | ||
FG-UD | (1,5) | 1 579 | 1 965 | 1 944 | 1 940 | 1 940 |
(2,5) | 2 988 | 3 466 | 3 579 | 3 548 | 3 547 | |
DFG-X | (1,5) | 1 700 | 2 077 | 2 057 | 2 053 | 2 052 |
(2,5) | 3 058 | 3 639 | 3 758 | 3 724 | 3 723 | |
DFG-O | (1,5) | 1 537 | 1 940 | 1 919 | 1 914 | 1 913 |
(2,5) | 3 013 | 3 442 | 3 554 | 3 523 | 3 522 | |
DFG-V | (1,5) | 1 615 | 2 008 | 1 986 | 1 983 | 1 982 |
(2,5) | 3 026 | 4 017 | 3 648 | 3 616 | 3 612 | |
DFG-A | (1,5) | 1 614 | 1 996 | 1 975 | 1 972 | 1 970 |
(2,5) | 3 027 | 3 510 | 3 623 | 3 592 | 3 592 |
表7
固支-自由边界条件下分段数对固有频率的影响
类型 | 模态(m,n) | 固有频率/Hz | ||||
---|---|---|---|---|---|---|
n0=0 | n0=1 | n0=2 | n0=3 | n0=4 | ||
FG-UD | (1,5) | 872 | 1 084 | 1 073 | 1 071 | 1 071 |
(2,5) | 1 860 | 2 158 | 2 220 | 2 208 | 2 208 | |
DFG-X | (1,5) | 980 | 1 197 | 1 185 | 1 183 | 1 183 |
(2,5) | 1 908 | 2 271 | 2 338 | 2 324 | 2 324 | |
DFG-O | (1,5) | 817 | 1 031 | 1 020 | 1 017 | 1 015 |
(2,5) | 1 870 | 2 136 | 2 209 | 2 187 | 2 183 | |
DFG-V | (1,5) | 899 | 1 115 | 1 103 | 1 101 | 1 101 |
(2,5) | 1 884 | 2 200 | 2 265 | 2 252 | 2 252 | |
DFG-A | (1,5) | 897 | 1 109 | 1 098 | 1 096 | 1 096 |
(2,5) | 1 886 | 2 187 | 2 260 | 2 238 | 2 238 |
表9
功能梯度圆柱壳的固有频率比较
振型 (m,n) | 简支-简支 | 固支-自由 | ||||
---|---|---|---|---|---|---|
文献[ | 本文固有频率/Hz | RD/% | 文献[ | 本文固有频率/Hz | RD/% | |
(1,1) | 13.211 | 13.216 | 0.038 | 250.8 | 249.02 | 0.71 |
(1,2) | 4.48 | 4.481 | 0.022 | 151.53 | 150.02 | 1.01 |
(1,3) | 4.156 9 | 4.157 | 0.002 | 219.33 | 218.76 | 0.26 |
(1,4) | 7.038 2 | 7.038 | 0.003 | 382.85 | 386.91 | 1.05 |
(1,5) | 11.241 | 11.241 | 0 | |||
(1,6) | 16.454 | 16.455 | 0.006 | |||
(1,7) | 22.634 | 22.635 | 0.004 | |||
(1,8) | 29.77 | 29.771 | 0.003 | |||
(1,9) | 37.859 | 37.862 | 0.008 | |||
(1,10) | 46.901 | 46.905 | 0.009 |
表11
DFG⁃CNTRC圆柱壳的固有频率
阶次 | FG-UD | DFG-X | DFG-O | DFG-V | DFG-A | |||||
---|---|---|---|---|---|---|---|---|---|---|
振型(m,n) | 频率/Hz | 振型(m,n) | 频率/Hz | 振型(m,n) | 频率/Hz | 振型(m,n) | 频率/Hz | 振型(m,n) | 频率/Hz | |
1 | (1,5) | 1 549 | (1,5) | 1 649 | (1,5) | 1 512 | (1,5) | 1 575 | (1,5) | 1 582 |
2 | (1,4) | 1 713 | (1,4) | 1 769 | (1,6) | 1 651 | (1,4) | 1 741 | (1,4) | 1 738 |
3 | (1,6) | 1 728 | (1,6) | 1 893 | (1,4) | 1 713 | (1,6) | 1 763 | (1,6) | 1 778 |
4 | (1,7) | 2 136 | (1,3) | 2 356 | (1,7) | 2 019 | (1,7) | 2 187 | (1,7) | 2 205 |
5 | (1,3) | 2 306 | (1,7) | 2 374 | (1,3) | 2 340 | (1,3) | 2 351 | (1,3) | 2 343 |
6 | (1,8) | 2 691 | (1,8) | 3 007 | (1,8) | 2 534 | (1,8) | 2 760 | (1,8) | 2 780 |
7 | (2,6) | 3 048 | (2,6) | 3 230 | (2,6) | 2 996 | (2,6) | 3 114 | (2,6) | 3 094 |
8 | (2,7) | 3 112 | (2,7) | 3 363 | (2,7) | 3 004 | (2,7) | 3 180 | (2,7) | 3 169 |
表12
科氏力对旋转态DFG⁃CNTRC圆柱壳频率特性的影响
结构模型 | 科氏力 | 类型 | 频率/Hz | |||||
---|---|---|---|---|---|---|---|---|
0 r/min | 2×103 r/min | 4×103 r/min | 6×103 r/min | 8×103 r/min | 1×104 r/min | |||
FG-UD | 无 | 动频 | 1 549 | 1 557 | 1 580 | 1 618 | 1 670 | 1 734 |
有 | 前行波 | 1 549 | 1 544 | 1 554 | 1 580 | 1 619 | 1 671 | |
后行波 | 1 549 | 1 570 | 1 606 | 1 657 | 1 722 | 1 800 | ||
DFG-X | 无 | 动频 | 1 649 | 1 656 | 1 678 | 1 714 | 1 763 | 1 824 |
有 | 前行波 | 1 649 | 1 643 | 1 652 | 1 675 | 1 712 | 1 760 | |
后行波 | 1 649 | 1 669 | 1 704 | 1 753 | 1 815 | 1 889 | ||
DFG-O | 无 | 动频 | 1 512 | 1 520 | 1 544 | 1 583 | 1 636 | 1 701 |
有 | 前行波 | 1 512 | 1 507 | 1 518 | 1 545 | 1 585 | 1 638 | |
后行波 | 1 512 | 1 533 | 1 570 | 1 622 | 1 688 | 1 767 | ||
DFG-V | 无 | 动频 | 1 575 | 1 583 | 1 605 | 1 643 | 1 694 | 1 757 |
有 | 前行波 | 1 575 | 1 570 | 1 579 | 1 604 | 1 642 | 1 692 | |
后行波 | 1 575 | 1 596 | 1 632 | 1 683 | 1 747 | 1 824 | ||
DFG-A | 无 | 动频 | 1 582 | 1 589 | 1 612 | 1 649 | 1 700 | 1 764 |
有 | 前行波 | 1 582 | 1 577 | 1 587 | 1 612 | 1 650 | 1 701 | |
后行波 | 1 582 | 1 602 | 1 638 | 1 688 | 1 752 | 1 828 |
1 | GUO X, ZENG J, MA H, et al. A dynamic model for simulating rubbing between blade and flexible casing[J]. Journal of Sound and Vibration, 2020, 466: 115036. |
2 | 李晖, 吕海宇, 邹泽煜, 等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642. |
LI H, LYU H Y, ZOU Z Y, et al. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425642 (in Chinese). | |
3 | LI H, PANG F, GONG Q, et al. Free vibration analysis of axisymmetric functionally graded doubly-curved shells with un-uniform thickness distribution based on Ritz method[J]. Composite Structures, 2019, 225: 111145. |
4 | WANG G J, CAI Y P, MA Y J, et al. Ultrastrong and stiff carbon nanotube/aluminum-copper nanocomposite via enhancing friction between carbon nanotubes[J]. Nano Letters, 2019, 19(9): 6255-6262. |
5 | SUN S, CAO D Q, HAN Q K. Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method[J]. International Journal of Mechanical Sciences, 2013, 68: 180-189. |
6 | 韩清凯, 王宇, 李学军. 旋转薄壁圆柱壳的高节径振动特性以及篦齿结构的影响[J]. 中国科学: 物理学 力学 天文学, 2013, 43(4): 436-458. |
HAN Q K, WANG Y, LI X J. High nodal diameter vibration characteristics of rotating shell and the effects of its sealing teeth[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(4): 436-458 (in Chinese). | |
7 | 王宇, 谷月, 李晖, 等. 高速旋转薄壁圆柱壳的行波共振特性研究[J]. 振动与冲击, 2016, 35(5): 222-227. |
WANG Y, GU Y, LI H, et al. Travelling wave resonance characteristics of a high-speed rotating thin cylindrical shell[J]. Journal of Vibration and Shock, 2016, 35(5): 222-227 (in Chinese). | |
8 | QUOC T H, HUAN D T, PHUONG H T. Vibration characteristics of rotating functionally graded circular cylindrical shell with variable thickness under thermal environment[J]. International Journal of Pressure Vessels and Piping, 2021, 193: 104452. |
9 | DONG Y H, LI Y H, CHEN D, et al. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion[J]. Composites Part B: Engineering, 2018, 145: 1-13. |
10 | DONG Y H, HE L W, WANG L, et al. Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study[J]. Aerospace Science and Technology, 2018, 82-83: 466-478. |
11 | DONG Y H, ZHU B, WANG Y, et al. Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load[J]. Journal of Sound and Vibration, 2018, 437: 79-96. |
12 | DONG Y H, LI X Y, GAO K, et al. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: Effects of spinning motion and thermal environment[J]. Nonlinear Dynamics, 2020, 99(2): 981-1000. |
13 | SHENG G G, WANG X. The non-linear vibrations of rotating functionally graded cylindrical shells[J]. Nonlinear Dynamics, 2017, 87(2): 1095-1109. |
14 | SHEN H S, XIANG Y. Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 213-216: 196-205. |
15 | 沈惠申. 功能梯度碳纳米管增强复合材料结构建模与分析研究进展[J]. 力学进展, 2016, 46(1): 478-505. |
SHEN H S. Modeling and analysis of functionally graded carbon nanotube reinforced composite structures: A review[J]. Advances in Mechanics, 2016, 46(1): 478-505 (in Chinese). | |
16 | SONG Z G, ZHANG L W, LIEW K M. Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments[J]. International Journal of Mechanical Sciences, 2016, 115-116: 339-347. |
17 | QIN B, ZHONG R, WANG T, et al. A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions[J]. Composite Structures, 2020, 232: 111549. |
18 | THOMAS B, ROY T. Vibration and damping analysis of functionally graded carbon nanotubes reinforced hybrid composite shell structures[J]. Journal of Vibration and Control, 2017, 23(11): 1711-1738. |
19 | CIVALEK Ö. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method[J]. Composites Part B: Engineering, 2017, 111: 45-59. |
20 | KIANI Y, DIMITRI R, TORNABENE F. Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation[J]. Composites Part B: Engineering, 2018, 147: 169-177. |
21 | LEI Z X, ZHANG L W, LIEW K M. Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method[J]. Composites Part B: Engineering, 2015, 77: 291-303. |
22 | QIN Z, PANG X, SAFAEI B, et al. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions[J]. Composite Structures, 2019, 220: 847-860. |
23 | HEYDARPOUR Y, MALEKZADEH P. Dynamic stability of rotating FG-CNTRC cylindrical shells under combined static and periodic axial loads[J]. International Journal of Structural Stability and Dynamics, 2018, 18(12): 1850151. |
24 | ROUT M, KARMAKAR A. Free vibration of rotating pretwisted CNTs-reinforced shallow shells in thermal environment[J]. Mechanics of Advanced Materials and Structures, 2019, 26(21): 1808-1820. |
25 | SOBHANIARAGH B, BATRA R C, MANSUR W J, et al. Thermal response of ceramic matrix nanocomposite cylindrical shells using Eshelby-Mori-Tanaka homogenization scheme[J]. Composites Part B: Engineering, 2017, 118: 41-53. |
26 | CHENG H, LI C F, JIANG Y L. Free vibration analysis of rotating pre-twisted ceramic matrix carbon nanotubes reinforced blades[J]. Mechanics of Advanced Materials and Structures, 2022, 29(14): 2040-2052. |
27 | MIAO X Y, LI C F, JIANG Y L. Free vibration analysis of metal-ceramic matrix composite laminated cylindrical shell reinforced by CNTs[J]. Composite Structures, 2021, 260: 113262. |
28 | XIANG Y, YUAN L, HUANG Y, et al. A novel matrix method for coupled vibration and damping effect analyses of liquid-filled circular cylindrical shells with partially constrained layer damping under harmonic excitation[J]. Applied Mathematical Modelling, 2011, 35(5): 2209-2220. |
29 | 李恩奇, 李道奎, 唐国金, 等. 基于传递函数方法的局部覆盖环状CLD圆柱壳动力学分析[J]. 航空学报, 2007, 28(6): 1487-1493. |
LI E Q, LI D K, TANG G J, et al. Dynamic analysis of cylindrical shell with partially covered ring-shape constrained layer damping by the transfer function method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1487-1493 (in Chinese). | |
30 | PRADHAN S C, LOY C T, LAM K Y, et al. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions[J]. Applied Acoustics, 2000, 61(1): 111-129. |
31 | LI H, LAM K Y, NG T Y. Rotating shell dynamics[M]. Amsterdam: Elsevier, 2005. |
32 | 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136. |
ZHONG W X. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136 (in Chinese). | |
33 | LI X, CHEN Y. Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure[J]. Journal of Sound and Vibration, 2002, 257(5): 967-976. |
[1] | 李晖 谷建霏 李济楠 孙占彬 孙凯华 刘小川 王鑫 张秉杰 张让威 高东武 王相平 林君哲 汪博 郭旭民 孙伟 马辉. 基础随机振动和流体压力脉动激励下航空发动机L型管路动力学建模与验证[J]. 航空学报, 0, (): 0-0. |
[2] | 方子唯 何晶靖 林京. 石墨烯掺杂聚合物复合材料介电性能建模研究[J]. 航空学报, 0, (): 0-0. |
[3] | 刘延宽, 袁航, 李顶河, 费宇杰. 热老化对热障涂层界面力学性能影响及数值计算[J]. 航空学报, 2023, 44(20): 428507-428507. |
[4] | 邹田春, 巨乐章, 管玉玺, 李泽钢, 陈红呈. 铺层方式对CFRP⁃Al胶接接头疲劳行为的影响[J]. 航空学报, 2023, 44(18): 428264-428264. |
[5] | 叶永盛, 丁迪, 吴海华, 何恩义, 殷诗浩, 胡正浪, 杨超. 石墨烯增强Fe3O4/乙基纤维素复合微球吸波性能[J]. 航空学报, 2023, 44(11): 427549-427549. |
[6] | 李晖, 吕海宇, 邹泽煜, 罗忠, 马辉, 韩清凯. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642-425642. |
[7] | 邹田春, 李龙辉, 刘志浩, 符记, 巨乐章. 搭接长度对CFRP-Al双搭接接头应变分布和失效模式的影响[J]. 航空学报, 2021, 42(6): 224921-224921. |
[8] | 佟安时, 谢里阳, 白恩军, 白鑫, 张诗健, 王博文. 纤维金属层板的静力学性能测试与预测模型[J]. 航空学报, 2017, 38(11): 221193-221193. |
[9] | 许琦, 吴振. 考虑横法向热应变的Reddy型功能梯度梁理论[J]. 航空学报, 2017, 38(8): 220918-220918. |
[10] | 孟维迎, 谢里阳, 刘建中, 白鑫, 佟安时. 玻璃纤维增强铝锂合金层板单峰过载疲劳寿命性能对比研究[J]. 航空学报, 2016, 37(5): 1536-1543. |
[11] | 王燕, 李书, 许秋怡, 马骏. 复合材料加筋板剪切后屈曲分析与优化设计[J]. 航空学报, 2016, 37(5): 1512-1525. |
[12] | 石友安, 贺立新, 邱波, 曾磊, 耿湘人, 魏东. 碳布叠层穿刺复合材料多尺度传热特性研究[J]. 航空学报, 2016, 37(4): 1207-1217. |
[13] | 代吉祥, 沙建军, 王首豪, 王永昌. 纤维表面状态对C/C-SiC复合材料微观组织和相成分的影响[J]. 航空学报, 2015, 36(5): 1704-1712. |
[14] | 李彪, 李亚智, 杨帆. 考虑复合材料层合板就地效应的强度理论[J]. 航空学报, 2014, 35(11): 3025-3036. |
[15] | 姬尧尧, 王富生, 岳珠峰, 刘志强. 金属聚合物复合材料的电树枝生长模拟[J]. 航空学报, 2014, 35(11): 3182-3189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学