[1] Advisory Council for Aeronautics Research in Europe (ACARE). Aeronautics and air transport:Beyond vision 2020(Towards 2050).[EB/OL]. (2010-06-10)[2021-09-20]. http://www.acare4europe.com/. [2] International Air Transport Association. "Vision 2050-Report"[R]. Montreal:IATA, 2011. [3] 张正国. NASA未来先进民用飞机与推进系统设计[J]. 国际航空, 2010(2):56-59. ZHANG Z G. Advanced civil aircraft and propulsion system design in NASA[J]. International Aviation, 2010(2):56-59(in Chinese). [4] COOPER J E. From blue skies to green skies:How structural dynamics and uncertainty quantification can benefit future aircraft desig[C]//Proceedings of ISMA2014, 2014. [5] 朱自强, 王晓璐, 吴宗成, 等. 民机设计中的多学科优化和数值模拟[J]. 航空学报, 2007, 28(1):1-13. ZHU Z Q, WANG X L, WU Z C, et al. Multi-disciplinary optimization and numerical simulation in civil aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):1-13(in Chinese). [6] 刘沛清, 张雯, 郭昊. 大型运输机的减阻技术[J]. 力学与实践, 2018, 40(2):129-139, 154. LIU P Q, ZHANG W, GUO H. Drag reduction technique for large transport aircraft[J]. Mechanics in Engineering, 2018, 40(2):129-139, 154(in Chinese). [7] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644. [8] 朱自强, 吴宗成. 现代飞机设计空气动力学[M]. 北京:北京航空航天大学出版社, 2005. ZHU Z Q, WU Z C. Aerodynamics of modern aircraft design[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2005(in Chinese). [9] HORSTMANN K H. TELFONA-Contribution to laminar wing development for future transport aircraft[C]//Aeronautical Days, 2006. [10] STREIT T, SCHRAUF G, DIN I S E, et al. The telfona pathfinder model, a second look[C]//V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, 2010. [11] JOSLIN R D. Overview of laminar flow control:NASA/TP-1998-208705[R]. Washington, D.C.:NASA, 1998. [12] COLLIER F. Integrated system research program environmentally responsible aviation (ERA) project[C]//Eco-aero Vision, 2010. [13] 朱志强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, GUAN J C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [14] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese). [15] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese). [16] SCHUBAUER G B, SKRAMSTAD H. Laminar-boundary-layer oscillations and transition on a flat plate[J]. Journal of Research of the National Bureau of Standards, 1947, 38:251. [17] PAREDES P, VENKATACHARI B, CHOUDHARI M M, et al. Transition analysis for the CRM-NLF wind tunnel configuration[C]//AIAA Scitech 2021 Forum. Reston:AIAA, 2021. [18] SARIC W, YEATES L. Experiments on the stability of crossflow vortices in swept-wing flows[C]//23rd Aerospace Sciences Meeting. Reston:AIAA, 1985. [19] INGEN J V. A suggested semi-empirical method for the calculation of the boundary layer transition region[J]. Journal of Applied Physics, 1956. [20] MALIK M R, ORSZAG S A. Linear stability analysis of three-dimensional compressible boundary layers[J]. Journal of Scientific Computing, 1987, 2(1):77-97. [21] STUART J T. On the non-linear mechanics of wave disturbances in stable and unstable parallel flows Part 1. The basic behaviour in plane Poiseuille flow[J]. Journal of Fluid Mechanics, 1960, 9(3):353-370. [22] ZHOU H, YOU X Y. On problems in the weakly nonlinear theory of hydrodynamic stability and its improvement[J]. Acta Mechanica Sinica, 1993, 9(1):1-12. [23] TANGD B, WANG W Z. On nonlinear stability in nonparallel boundary layer flow[J]. Journal of Hydrodynamics (Ser B), 2004, 16(3):301-307. [24] BERTOLOTTI F P, HERBERT T, SPALART P R. Linear and nonlinear stability of the Blasius boundary layer[J]. Journal of Fluid Mechanics, 1992, 242:441-474. [25] GREER D, HAMORY P, KRAKE K, et al. Design and predictions for a high-altitude (low Reynolds-number) aerodynamic flight experiment[C]//17th Applied Aerodynamics Conference. Reston:AIAA, 1999. [26] MESSING R, KLOKER M J. Investigation of suction for laminar flow control of three-dimensional boundary layers[J]. Journal of Fluid Mechanics, 2010, 658:117-147. [27] DHAWAN S, NARASIMHA R. Some properties of boundary layer flow during the transition from laminar to turbulent motion[J]. Journal of Fluid Mechanics, 1958, 3(4):418-436. [28] CHO J R, CHUNG M K. A k-e-γ equation turbulence model[J]. Jounal of Fluid Mechanics, 1992, 237:301-322. [29] STEELANT J, DICK E. Modelling of bypass transition with conditioned Navier-Stokes equations coupled to an intermittency transport equation[J]. International Journal for Numerical Methods in Fluids, 1996, 23:193-220. [30] SUZEN Y, HUANG P. Modeling of flow transition using an intermittency transport equation[J]. Journal of Fluids Engineering, 2000, 122:273-284. [31] LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [32] 黄章峰, 逯学志, 于高通. 机翼边界层的横流稳定性分析和转捩预测[J]. 空气动力学学报, 2014, 32(1):14-20. HUANG Z F, LU X Z, YU G T. Cross-flow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20(in Chinese) [33] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese). [34] 王亮, 符松. 一种适用于超音速边界层的湍流转捩模式[J]. 力学学报, 2009, 41(2):162-168. WANG L, FU S. A new transition/turbulence model for the flow transition in supersonic boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2):162-168(in Chinese). [35] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997. FANG B R. Aerodynamic layout design of aircraft[M]. Beijing:Aviation Industry Press, 1997(in Chinese). [36] KHALID M, JONES D J. A summary of transonic natural laminar flow airfoil development at NAE (resume des recherches de l'Ena sur des profils aerodynamiques A ecoulements laminaires naturels transsoniques):NAE-NN-65 NRC No.31608[R]. Ottawa:National Research Council Canada, 1990. [37] 乔志德, 赵文华, 李育斌, 等. 超临界自然层流翼型NPU-L72513的风洞试验研究[J]. 气动实验与测量控制, 1993, 7(2):40-45. QIAO Z D, ZHAO W H, LI Y B, et al. The transonic wind tunnel test research for the supercritical natural laminar airfoil NPU-L72513[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(2):40-45(in Chinese). [38] BIBER K, TILMANN C P. Supercritical airfoil design for future high-altitude long-endurance concepts[J]. Journal of Aircraft, 2004, 41(1):156-164. [39] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795. [40] STREIT T, WICHMANN G, VON KNOBLAUCH ZU HATZBACH F, et al. Implications of conical flow for laminar wing design and analysis[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011. [41] EGGLESTON B, POOLE R J D, JONES D J, et al. Thick supercritical airfoils with low drag and natural laminar flow[J]. Journal of Aircraft, 1987, 24(6):405-411. [42] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164. [43] HAN Z H, CHEN J, ZHU Z, et al. Aerodynamic design of transonic natural-laminar-flow (NLF) wing via surrogate-basedGlobal optimization[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [44] 陈永彬, 唐智礼, 盛建达. 跨音速自然层流翼型多目标优化设计[J]. 计算物理, 2016, 33(3):283-296. CHENY B, TANG Z L, SHENG J D. Multi-objective optimization for natural laminar flow airfoil in transonic flow[J]. Chinese Journal of Computational Physics, 2016, 33(3):283-296(in Chinese). [45] 邢宇, 罗东明, 余雄庆. 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8):1616-1624. XING Y, LUO D M, YU X Q. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8):1616-1624(in Chinese). [46] 武宁, 唐鑫, 段卓毅, 等. 基于TSP方法的自然层流机翼转捩位置测量[J]. 实验流体力学, 2020, 34(6):66-70. WU N, TANG X, DUAN Z Y, et al. Transition measurement for the nature-laminar wing based on TSP technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6):66-70(in Chinese). [47] 艾梦琪, 段卓毅, 张健, 等. 高亚声速层流翼型转捩数值模拟及试验研究[J]. 飞行力学, 2020, 38(6):77-81, 94. AI M Q, DUAN Z Y, ZHANG J, et al. Numerical simulation and test on transition of a high subsonic laminar airfoil[J]. Flight Dynamics, 2020, 38(6):77-81, 94(in Chinese). [48] 赵轲, 郭兆电, 李权, 等. 基于混沌多项式方法的层流超临界翼型稳健设计研究[J]. 应用力学学报, 2016, 33(6):929-935, 1113. ZHAO K, GUO Z D, LI Q, et al. Robust design of laminar flow supercritical airfoil based on PCE method[J]. Chinese Journal of Applied Mechanics, 2016, 33(6):929-935, 1113(in Chinese). [49] 张彦军, 赵轲, 张同鑫, 等. 雷诺数变化对翼型边界层发展及失速特性的影响[J]. 航空工程进展, 2019, 10(3):319-329. ZHANG Y J, ZHAO K, ZHANG T X, et al. The influence of Reynolds number on boundary layer development and stall characteristics of airfoil[J]. Advances in Aeronautical Science and Engineering, 2019, 10(3):319-329(in Chinese). [50] ANDERSON B T, MEYER R R. Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach number from 0.700 to 0.825:NASA Technical memorandum 101712[R]. Washington,D.C.:NASA, 1990. [51] PERRAUD J, ARCHAMBAUD J P. Transonic high Reynolds number transition experiments in the ETW cryogenic wind tunnel[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010. [52] PERRAUD J, SÉRAUDIE A, MOENS F. Transition on a high lift swept wing in the European Project Eurolift[C]//21st AIAA Applied Aerodynamics Conference. Reston:AIAA, 2003. [53] FAUCI R, NICOL A. Wind tunnel tests of a transonic natural laminar flow wing[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2006. [54] 尚金奎, 王鹏, 陈柳生, 等. TSP技术在转捩检测中的应用研究[J]. 空气动力学学报, 2015, 33(4):464-469. SHANG J K, WANG P, CHEN L S, et al. Application research of TSP technique in transition detection[J]. Acta Aerodynamica Sinica, 2015, 33(4):464-469(in Chinese). [55] 赖国俊, 李政德, 张颖哲. 自然层流翼型高雷诺数风洞试验研究[J]. 航空科学技术, 2017, 28(8):12-15. LAI G J, LI Z D, ZHANG Y Z. Research on natural laminar airfoil wind tunnel test at high Reynolds number[J]. Aeronautical Science & Technology, 2017, 28(8):12-15(in Chinese). [56] 邓双国, 额日其太, 聂俊杰. 后掠翼模型混合层流控制实验研究[J]. 实验流体力学, 2011, 25(3):30-33. DENG S G, ERQITAI, NIE J J. Hybrid laminar flow control experiment on swept wing model[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):30-33(in Chinese). [57] 王斌, 白存儒, 杨广郡, 等.后掠机翼低速流动转捩位置的升华法测量[J]. 实验力学, 2009, 24(3):197-201. WANG B, BAI C R, YANG G J, et al. Measurement of transition location change of swept wing in a low-speed flow based on sublimation method[J]. Journal of Experiment Mechanics, 2009, 24(3):197-201(in Chinese). [58] VAVRA A, SOLOMON W, DRAKE A. Comparison of boundary layer transition measurement techniques on a laminar flow wing[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [59] FOWELL L R. Antonatos P.P. Some results from the X-21A program-part2:Laminar flow flight test results on the X21-A. in recent developments in boundary layer research-part IV:AGARD Graph 97[R]. Paris:AGARD, 1965. [60] WAGNER R D, MADDALON D V, FISHER D F. Laminar flow control leading-edge systems in simulated airline service[J]. Journal of Aircraft, 1990, 27(3):239-244. [61] MADDALON D V. Hybrid laminar flow control fight research:NASA TM4331[R]. Washington, D.C.:NASA, 2015. [62] COLLIER JR F S. An overview of recent subsonic laminar flow control flight experiments[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993. [63] FUJINO M. Natural-laminar-flow airfoil development for the honda jet[C]//20th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2002. [64] 利.空客即将开展降低油耗的层流机翼技术试飞[J]. 国际航空, 2017(9):13. LI. Airbus is about to launch a test flight of laminar flow wing technology to reduce fuel consumption[J]. International Aviation, 2017(9):13(in Chinese). [65] STURDZA P. Extensive supersonic natural laminar flow on the aerion business jet[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007. [66] 钟海. 层流飞行试验迎角精确控制技术研究[J]. 飞行力学, 2020, 38(3):82-86. ZHONG H. Investigation for precise angle-of-attack control technique of laminar flow flight test[J]. Flight Dynamics, 2020, 38(3):82-86(in Chinese). [67] 王猛, 钟海, 衷洪杰, 等. 红外热像边界层转捩探测的飞行试验应用研究[J]. 空气动力学学报, 2019, 37(1):160-167. WANG M, ZHONG H, ZHONG H J, et al. Flight test applications of boundary layer transition detection method using IR technique[J]. Acta Aerodynamica Sinica, 2019, 37(1):160-167(in Chinese). [68] 李沛峰, 张彬乾, 陈迎春, 等. 减小翼型激波阻力的鼓包流动控制技术[J]. 航空学报, 2011, 32(6):971-977. LI P F, ZHANG B Q, CHEN Y C, et al. Wave drag reduction of airfoil with shock control bump[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):971-977(in Chinese). [69] KIRCHNER M E. Laminar flow:Challenge and potential:NASA CP-2487[R]. Washington, D.C.:NASA, 1987 [70] SEITZ A, KRUSE M, WUNDERLICH T, et al. The DLR project LamAiR:Design of a NLF forward swept wing for short and medium range transport application[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011. [71] BRANDON J M,MANUAL G S, WRIGHT R E, et al. In-flight flow visualization using infrared imaging[J]. Journal of Aircraft, 1990, 27(7):612-618. [72] HORSTMANN K, MUELLER R, ROHARDT C, et al. Design and flight test evaluation of a laminar wing glove on a commuter aircraft[C]//19th ICAS Congress, 1994. [73] SZEWCZYK M, SMUSZ R, DE GROOT K, et al. In-flight investigations of the unsteady behaviour of the boundary layer with infrared thermography[J]. Measurement Science and Technology, 2017, 28(4):044002. [74] CARPENTER A, SARIC W, REED H. Laminar flow control on a swept wing with distributed roughness[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008. [75] TUCKER A A, SARIC W S, REED H L. Laminar flow control flight experiment design and execution[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014. [76] ROBERTS M W, REED H L, SARIC W S. Computational evaluation and linear stability of a transonic laminar-flow wing glove[J]. Journal of Aircraft, 2014, 52(2):595-608. [77] GARZON A,MATISHECK J, BANKS D, et al. Supersonic NLF robustness flight testing:Transition due to discrete roughness elements[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014. [78] RESHOTKO E. Drag reduction by cooling in hydrogen-fueled aircraft[J]. Journal of Aircraft, 1979, 16(9):584-590. [79] 张庆利, 李京伯. 用主动柔顺壁运动控制边界层转捩[J]. 空气动力学学报, 1999, 17(3):333-337. ZHANG Q L, LI J B. Control of boundary layer transition UsingActive compliant wall motion[J]. Acta Aerodynamica Sinica, 1999,17(3):333-337(in Chinese). [80] CARPENTER P W, PORTER L J. Effects of passive porous walls on boundary-layer instability[J]. AIAA Journal, 2001, 39(4):597-604. [81] SARIC W, RUBEN CARRILLO J JR, REIBERT M. Leading-edge roughness as a transition control mechanism[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998. [82] 徐家宽, 白俊强. 基于边界层相似性解的放大因子输运模型[J]. 航空学报, 2016, 37(4):1103-1113. XU J K, BAI J Q. Amplification factor transport model based on boundary layer similarity solution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1103-1113(in Chinese). [83] SAEED T I, GRAHAM W R, HALL C A. Boundary-layer suction system design for laminar-flying-wing aircraft[J]. Journal of Aircraft, 2011, 48(4):1368-1379. [84] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014. [85] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52. [86] RISSE K, STUMPF E. Conceptual aircraft design with hybrid laminar flow control[J]. CEAS Aeronautical Journal, 2014, 5(3):333-343. [87] 王菲, 额日其太, 王强, 等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010, 24(3):54-58. WANG F,ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese). [88] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). [89] SHI Y Y, BAI J Q, HUA J, et al. Numerical analysis and optimization of boundary layer suction on airfoils[J]. Chinese Journal of Aeronautics, 2015, 28(2):357-367. [90] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese). [91] BANKS D W, FREDERICK M A. In-flight boundary-layer transition of a large flat plate at supersonic speeds[C]//15th International Symposium on Flow Visualization, 2012. [92] YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5):124-146. [93] NIU H B, YI S H, LIU X L, et al. Experimental investigation of boundary layer transition over a delta wing at Mach number 6[J]. Chinese Journal of Aeronautics, 2020, 33(7):1889-1902. [94] 聂晗, 宋文萍, 韩忠华, 等.面向超声速民机层流机翼设计的转捩预测方法[J]. 航空学报, 2022, 43(9):626342. NIE H, SONG W P,HAN Z H, et al. Automatic transition prediction for natural-laminar-flow wing design of supersonic transports[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):626342(in Chinese). [95] 丁玉临, 韩忠华, 乔建领, 等.超声速民机总体气动布局设计关键技术研究进展[J].航空学报, 2022, 43(9):626310. DING Y L,HAN Z H, QIAO J L, et al. Research progress of key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica,2022,43(9):626310(in Chinese). |