1 |
BURGIN G H, OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat. Volume 2: Program description: NASA CR 2583[R]. Washington D. C.: NASA, 1975.
|
2 |
BURGIN G H, OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat. Volume 1: General description: NASA CR 2582[R]. Washington D. C.: NASA, 1975.
|
3 |
BURGIN G H, EGGLESTON D M. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack: NASA CR 145004[R]. Washington D. C.: NASA, 1976.
|
4 |
HANKINS III WW. Computer-automated opponent for manned air-to-air combat simulations: NASA TP-1518[R]. Washington D. C.: NASA, 1979.
|
5 |
GOODRICH K H, MCMANUS J W. Development of a tactical guidance research and evaluation system (TGRES)[C]∥Flight Simulation Technologies Conference and Exhibit. Reston: AIAA, 1989: 3312.
|
6 |
GOODRICH K H, MCMANUS J W. An integrated environment for tactical guidance research and evaluation[C]∥Orbital Debris Conference: Technical Issues andFuture Directions. Reston: AIAA, 1990: 1287.
|
7 |
GOODRICH K H. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation: NASA TM-4440[R]. Washington D. C.: NASA, 1993.
|
8 |
BATTERSON J G, MORELLI E A. Parameter identification flight test maneuvers for closed loop modeling of the F-18 High Alpha Research Vehicle (HARV): NASACR-198269[R]. Washington D. C.: NASA, 1996.
|
9 |
ILIFF K W, WANG K C. Flight-determined subsonic longitu-dinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with thrust vectoring: NASA/TP-97-206539[R]. Washington D. C.: NASA, 1997.
|
10 |
AUSTIN F, CARBONE G, FALCO M, et al. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1143-1149.
|
11 |
徐光达, 吕超, 王光辉, 等. 基于双矩阵对策的UCAV空战自主机动决策研究[J]. 舰船电子工程, 2017, 37(11): 24-28, 39.
|
|
XU G D, LV C, WANG G H, et al. Research on UCAV autonomous air combat maneuvering decision-making based on Bi-matrix game[J]. Ship Electronic Engineering, 2017, 37(11): 24-28, 39 (in Chinese).
|
12 |
MA Y F, MA X L, SONG X. A case study on air combat decision using approximated dynamic programming[J]. Mathematical Problems in Engineering, 2014, 2014: 1-10.
|
13 |
MCGREW J S, HOW J P, WILLIAMS B, et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1641-1654.
|
14 |
VIRTANEN K, RAIVIO T, HAMALAINEN R P. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 665-677.
|
15 |
VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1080-1091.
|
16 |
JOSEPH T. AI claims “Flawless Victory” going undefeated in digital dogfight with human fighter pilot[EB/OL]. [2023-03-10]. .
|
17 |
DONG Y Q, AI J L. Trial input method and own-aircraft state prediction in autonomous air combat[J]. Journal of Aircraft, 2012, 49(3): 947-954.
|
18 |
DONG Y Q, AI J L. Maneuvering strategy and own aircraft movement prediction in trial input method: Low angle of attack[C]∥Infotech@Aerospace 2012. Reston: AIAA, 2012: 2594.
|
19 |
DONG Y Q, HUANG J, AI J L. Visual perception-based target aircraft movement prediction for autonomous air combat[J]. Journal of Aircraft, 2014, 52(2): 538-552.
|
20 |
DONG Y Q. Deep learning-based opponent aircraft attitude detection in autonomous air combat[J]. Journal of Aerospace Information Systems, 2019, 16(4): 162-167.
|
21 |
薄涛. 格斗空战行为建模技术研究[D]. 长沙: 国防科学技术大学,2002.
|
|
BO T. Research on human behavior representation of fighter dogfight combat[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2002 (in Chinese).
|
22 |
徐安, 高春庆, 寇英信, 等. 基于BFM方法的1vs1近距自主空战决策[J]. 系统工程与电子技术, 2020, 42(11): 2513-2519.
|
|
XU A, GAO C Q, KOU Y X, et al. Autonomous air combat decision of 1vs1 based on BFM method[J]. Systems Engineering and Electronics, 2020, 42(11): 2513-2519 (in Chinese).
|
23 |
陈斌, 王江, 王阳. 战斗机嵌入式训练系统中的智能虚拟陪练[J]. 航空学报, 2020, 41(6): 523467.
|
|
CHEN B, WANG J, WANG Y. Intelligent virtual training partner in embedded training system of fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523467 (in Chinese).
|
24 |
董一群, 艾剑良. 自主空战技术中的机动决策: 进展与展望[J]. 航空学报, 2020, 41(S2): 724264.
|
|
DONG Y Q, AI J L. Decision making in autonomous air combat: Review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724264 (in Chinese)
|
25 |
DONG Y Q, AI J L, LIU J Q. Guidance and control for own aircraft in the autonomous air combat: a historical review and future prospects[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(16): 5943-5991.
|
26 |
上电所举办首届智能空战竞赛[EB/OL]. [2023-03-10]. .
|
|
First Intelligent Aerial Combat Competition held by the China Aviation Radio Electronics Research Institute [EB/OL]. [2023-03-10]. ."
|
27 |
“智慧协同, 决战长空” 2021年智能空战竞赛决赛在中国航空无线电电子研究所成功举办[EB/OL]. [2022-06-01]..
|
|
The 2021 Intelligent Air Combat Competition, Collaboration Wisdom, Battle for the Sky, was successfully held at the China Aeronautical Radio Electronics Research Institute [EB/OL]. [2022-06-01]. (in Chinese).
|
28 |
DONG Y Q, ZHONG Y X, YU W B, et al. Mcity data collection for automated vehicles study[DB/OL]. preprint arXiv: , 2019.
|
29 |
薛涛, 马金毅, 温炯然, 等. 视距内空战飞行机动数据采集及分析[C]∥第40届中国控制会议论文集 (15). 上海: 中国自动化学会控制理论专业委员会, 中国自动化学会, 中国系统工程学会, 2021: 716-721.
|
|
XUE T, MA J Y, WEN J R, et al. Within-visual-range Air Combat Engagement Database of Human Pilots[C]∥Proceedings of the 40th China Control Conference (15). Shanghai: nical Committee on Control Theory, Chinese Association of Automation, Chinese Association of Automation, Systems Engineering Society of China, 2021: 716-721 (in Chinese).
|
30 |
DONG Y Q. Implementing Deep Learning for comprehensive aircraft icing and actuator/sensor fault detection/identification[J]. Engineering Applications of Artificial Intelligence, 2019, 83: 28-44.
|
31 |
DONG Y Q. An application of Deep Neural Networks to the in-flight parameter identification for detection and characterization of aircraft icing[J]. Aerospace Science and Technology, 2018, 77: 34-49.
|
32 |
KELKAR S S, GRIGSBY L L, LANGSNER J. An extension of parseval’s theorem and its use in calculating transient energy in the frequency domain[J]. IEEE Transactions on Industrial Electronics, 1983, IE-30(1): 42-45.
|