1 |
WANG Y D, ZHENG W. Pulse phase estimation of X-ray pulsar with the aid of vehicle orbital dynamics[J]. Journal of Navigation, 2016, 69(2): 414-432.
|
2 |
HAN X X, DU T X, PAN C, et al. Similar Hadamard-based compressive sensing and its application in pulsar TOA estimation[J]. Optik, 2019, 197: 163270.
|
3 |
BEI X M, SHUAI P, HANG L W, et al. Research on the pulsar optimizing method and the database construction[M]∥Lecture Notes in Electrical Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: 595-602.
|
4 |
RAO Y, KANG Z W, LIU J, et al. High-accuracy pulsar time delay estimation using an FrFT-based GCC[J]. Optik, 2019, 181: 611-618.
|
5 |
李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J]. 航空学报, 2016, 37(4): 1305-1315.
|
|
LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1305-1315 (in Chinese).
|
6 |
NING X L, GUI M Z, FANG J C, et al. Differential X-ray pulsar aided celestial navigation for Mars exploration[J]. Aerospace Science and Technology, 2017, 62: 36-45.
|
7 |
LIU Y, HUANG J F, CAI S, et al. Electric simulation of silicon drift detector for single photon measurement[J]. Europhysics Letters, 2020, 130(5): 50006.
|
8 |
熊凯, 魏春岭, 李连升, 等. 基于扩维QLEKF的脉冲星/星间定向组合导航[J]. 航空学报, 2023, 44(3): 526232.
|
|
XIONG K, WEI C L, LI L S, et al. Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(3): 526232 (in Chinese).
|
9 |
SUN J, GUO P B, WU T, et al. Pulsar/star tracker/INS integrated navigation method based on asynchronous observation model[J]. Journal of Aerospace Engineering, 2019, 32(5): 4019075.
|
10 |
孙海峰, 邓忠文, 苏哲, 等. 空间射电望远镜的脉冲星自主导航性能分析[C]//第十二届中国卫星导航年会. 中国卫星导航系统管理办公室学术交流中心:中国卫星导航学术年会组委会,2021: 97-102.
|
|
SUN H F, DENG Z W, SU Z, et al. Analysis of pulsar autonomous navigation performance of space radio telescopes[C]∥The 12th Annual Conference of China Satellite Navigation. Nanchang: 2021: 97-102 (in Chinese).
|
11 |
HENKE B L, GULLIKSON E M, DAVIS J C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z=1-92[J]. Atomic Data and Nuclear Data Tables, 1993, 54(2): 181-342.
|
12 |
HU J G, WANG P, LU Y H, et al. Sub-diffraction-limit imaging in optical hyperlens[J]. Chinese Physics Letters, 2008, 25(12): 4439-4441.
|
13 |
赵宝升, 苏桐, 盛立志. 空间X射线通信概论[M]. 北京: 科学出版社, 2016: 13.
|
|
ZHAO B S, SU T, SHENG L Z. Introduction to space X-ray communication[M]. Beijing: Science Press, 2016: 13 (in Chinese).
|
14 |
DOWNS G S. Interplanetary navigation using pulsating radio sources[R]. Washington D. C.: NASA, 1974.
|
15 |
CHESTER T J, BUTMAN S A. Navigation using X-ray pulsars[R]. Washington D. C.: NASA, 1981.
|
16 |
赵士伟. 太阳系拉格朗日点研究与可视化表示[D]. 石家庄: 石家庄铁道大学, 2020: 72.
|
|
ZHAO S W. The visualization Lagrange point in the solar-system[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020: 72 (in Chinese).
|
17 |
HILL K A. Autonomous navigation in libration point orbits[D]. Boulder: University of Colorado at Boulder, 2007.
|
18 |
赵露华, 费保俊, 杜健, 等. 基于X射线脉冲星的Halo轨道卫星自主导航和控轨[J]. 装甲兵工程学院学报, 2011, 25(5): 94-97, 102.
|
|
ZHAO L H, FEI B J, DU J, et al. Navigation and orbit control of satellites in halo orbits based on X-ray pulsars[J]. Journal of Academy of Armored Force Engineering, 2011, 25(5): 94-97, 102 (in Chinese).
|
19 |
YANG C W, ZHENG J H, LI M T, et al. Integrated navigation based on pulsar in libration point orbit[C]∥Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2014: 83-87
|
20 |
GAO Y T, YOU Z C, LIU J Y, et al. The influence of orbital maneuver on autonomous orbit determination of an extended satellite navigation constellation[J]. Advances in Space Research, 2021, 67(6): 1733-1742.
|
21 |
王大轶, 李茂登, 黄翔宇. 航天器多源信息融合自主导航技术[M]. 北京: 北京理工大学出版社, 2018: 168-169.
|
|
WANG D Y, LI M D, HUANG X Y. Spacecraft autonomous navigation technology based on multi-source information fusion[M]. Beijing: Beijing Insititute of Technology Press, 2018: 168-169 (in Chinese).
|
22 |
梁昊, 詹亚锋, 尹海亮. X射线脉冲星导航系统选星方法研究[J]. 电子与信息学报, 2015, 37(10): 2356-2362.
|
|
LIANG H, ZHAN Y F, YIN H L. Research on pulsars selection for X-ray pulsar navigation system[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2356-2362 (in Chinese).
|
23 |
HANG S, LIU Y P, LI H, et al. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 887: 18-26.
|
24 |
HAMAMATSU. Light excited X-ray tube n5084 technical information[EB/OL]. [2021-08-31]. extension:∥bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https% 3A%2F%2Fseltokphotonics.com%2Fupload%2Fiblock%2Fa62%2Fa6244462da8bf8c33106fb3c9c30fb88.pdf.
|
25 |
FENG Z P, LIU Y P, MU J X, et al. Optimization and testing of groove-shaped grid-controlled modulated X-ray tube for X-ray communication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1026: 166218.
|
26 |
王瑞荣, 安红海, 熊俊, 等. 准单色近平行光束的X射线源[J]. 物理学报, 2018, 67(24): 240701.
|
|
WANG R R, AN H H, XIONG J, et al. X-ray source with quasi-monochromatic parallel beam[J]. Acta Physica Sinica, 2018, 67(24): 240701 (in Chinese).
|
27 |
BERNHARDT H, SCHMITT A T, GRABIGER B, et al. Ultra-high precision X-ray polarimetry with artificial diamond channel cuts at the beam divergence limit[J]. Physical Review Research, 2020, 2(2): 023365.
|
28 |
WANG Y Y, LIU Y P, MU J X, et al. Collimating/focusing optical system designed for hard X-ray communication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1016: 165776.
|
29 |
郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 98.
|
|
ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: theory and applications[M]. Beijing: Science Press, 2015: 98 (in Chinese).
|
30 |
MA Y T, LIU J B, ZHAO W X, et al. Researches on stability of microfocus electron-impact X-ray source[C]∥ SPIE Proceedings of 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials. Bellingham: SPIE, 2016, 9685: 115-119.
|
31 |
ZHU X L, CHEN M, WENG S M, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 2020, 6(22): eaaz7240.
|