1 |
何友, 姚力波, 江政杰. 基于空间信息网络的海洋目标监视分析与展望[J]. 通信学报, 2019, 40(4): 1-9.
|
|
HE Y, YAO L B, JIANG Z J. Summary and future development of marine target surveillance based on spatial information network[J]. Journal on Communications, 2019, 40(4): 1-9 (in Chinese).
|
2 |
何友, 姚力波. 天基海洋目标信息感知与融合技术研究[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1530-1536.
|
|
HE Y, YAO L B. Space-based Sea target information awareness and fusion[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1530-1536 (in Chinese).
|
3 |
何友, 熊伟, 刘俊, 等. 海上信息感知与融合研究进展及展望[J]. 火力与指挥控制, 2018, 43(6): 1-10.
|
|
HE Y, XIONG W, LIU J, et al. Review and prospect of research on maritime information perception and fusion[J]. Fire Control & Command Control, 2018, 43(6): 1-10 (in Chinese).
|
4 |
GÓMEZ-TOSTÓN C, BARRENA M, CORTÉS Á. Characterizing the optimal Pivots for efficient similarity searches in vector space databases with Minkowski distances[J]. Applied Mathematics and Computation, 2018, 328: 203-223.
|
5 |
CHEN L, NG R. On the marriage of Lp-norms and edit distance[C]∥ Proceedings of the Thirtieth international conference on Very large data bases - Volume 30. New York: ACM, 2004: 792-803.
|
6 |
FEI S, CAI S, GU J. A modified Hausdorff distance-based algorithm for 2-dimensional spatial trajectory matching[C]∥2010 5th International Conference on Computer Science and Education (ICCSE), 2010.
|
7 |
VLACHOS M, KOLLIOS G, GUNOPULOS D. Discovering similar multidimensional trajectories[C]∥Proceedings 18th International Conference on Data Engineering. Piscataway: IEEE Press, 2001: 673-684.
|
8 |
KEOGH E J, PAZZANI M J. Scaling up dynamic time warping for datamining applications[C]∥Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000: 285-289.
|
9 |
KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.
|
10 |
PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems With Applications, 2009, 36(2): 3336-3341.
|
11 |
ESTER M. A density-based algorithm for discovering clusters in large spatial databases with noise[C]∥Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996.
|
12 |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
|
13 |
MAHESWARI K, RAMAKRISHNAN M. Kernelized spectral clustering based conditional MapReduce function with big data[J]. International Journal of Computers and Applications, 2021, 43(7): 601-611.
|
14 |
LATIFI-PAKDEHI A, DANESHPOUR N. DBHC: A DBSCAN-based hierarchical clustering algorithm[J]. Data & Knowledge Engineering, 2021, 135: 101922.
|
15 |
周星星, 吉根林, 张书亮. 时空轨迹相似性度量方法综述[J]. 地理信息世界, 2018, 25(4): 11-18.
|
|
ZHOU X X, JI G L, ZHANG S L. Overview of the similarity measurement methods for spatial-temporal trajectory[J]. Geomatics World, 2018, 25(4): 11-18 (in Chinese).
|
16 |
WARREN LIAO T W. Clustering of time series data—a survey[J]. Pattern Recognition, 2005, 38(11): 1857-1874.
|
17 |
ZHENG Y. Trajectory data mining: An overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3): 1-41.
|
18 |
PAN X L, HE Y, WANG H P, et al. Mining regular behaviors based on multidimensional trajectories[J]. Expert Systems With Applications, 2016, 66: 106-113.
|
19 |
孙璐, 周伟, 姜佰辰, 等. 一种时空联合约束的多源航迹相似性度量模型[J]. 系统工程与电子技术, 2017, 39(11): 2405-2413.
|
|
SUN L, ZHOU W, JIANG B C, et al. Multi-source trajectories similarity measure model with spatial and temporal constraints[J]. Systems Engineering and Electronics, 2017, 39(11): 2405-2413 (in Chinese).
|
20 |
HUNG C C, PENG W C, LEE W C. Clustering and aggregating clues of trajectories for mining trajectory patterns and routes[J]. The VLDB Journal, 2015, 24(2): 169-192.
|
21 |
AGRAWAL, SWAMI A. Mining association rules between sets of items in large databases[C]∥Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 1993: 207-216.
|
22 |
魏龙翔, 何小海, 滕奇志, 等. 结合Hausdorff距离和最长公共子序列的轨迹分类[J]. 电子与信息学报, 2013, 35(4): 784-790.
|
|
WEI L X, HE X H, TENG Q Z, et al. Trajectory classification based on Hausdorff distance and longest common SubSequence[J]. Journal of Electronics & Information Technology, 2013, 35(4): 784-790 (in Chinese).
|
23 |
LI H H, LIU J X, YANG Z L, et al. Adaptively constrained dynamic time warping for time series classification and clustering[J]. Information Sciences, 2020, 534: 97-116.
|
24 |
LEE J G, HAN J W, LI X L. Trajectory outlier detection: A partition-and-detect framework[C]∥2008 IEEE 24th International Conference on Data Engineering. Piscataway: IEEE Press, 2008: 140-149.
|
25 |
WEN Y T, LAI C H, LEI P R, et al. RouteMiner: Mining Ship Routes from a Massive Maritime Trajectories[C]∥ IEEE International Conference on Mobile Data Management. IEEE, 2014: 353-356.
|
26 |
李旭东, 成烽. 一种基于密度峰值聚类的经典轨迹计算方法[J]. 中国电子科学研究院学报, 2019, 14(9): 967-972.
|
|
LI X D, CHENG F. Computing classical trajectories using density-peak based clustering[J]. Journal of China Academy of Electronics and Information Technology, 2019, 14(9): 967-972 (in Chinese).
|
27 |
PICIARELLI C, MICHELONI C, FORESTI G L. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1544-1554.
|