[1] ZHU D H, FENG X Z, XU X H, et al. Robotic grinding of complex components:A step towards efficient and intelligent machiningNchallenges, solutions, and applications[J]. Robotics and Computer Integrated Manufacturing, 2020, 65: 101908. [2] 王立凡. 大型薄壁构件镜像加工装备运动控制技术研究[D]. 大连: 大连理工大学, 2019: 1-5. WANG L F. Study on motion control of mirror milling equipment for large thin-walled parts[D]. Dalian: Dalian University of Technology, 2019: 1-5(in Chinese). [3] 薛雷, 曾宏伟, 覃程锦, 等. 采用同步压缩变换和能量熵的机器人加工颤振监测方法[J]. 西安交通大学学报, 2019, 53(8): 24-30, 89. XUE L, ZENG H W, QIN C J, et al. A chatter monitoring method for robotic machining using synchro-squeezed transform and energy entropy[J]. Journal of Xi’an Jiaotong University, 2019, 53(8): 24-30, 89(in Chinese). [4] 方强,李超,费少华, 等. 机器人镗孔加工系统稳定性分析[J]. 航空学报, 2016, 37(2): 727-737. FANG Q, LI C, FEI S H, et al. Stability analysis of robot boring system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 727-737(in Chinese). [5] 岳超. 工业机器人加工系统刚度特性分析及铣削稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 1-2. YUE C. Research on stiffness characteristic and milling stability of industrial robot machining system[D].Harbin: Harbin Institute of Technology, 2020: 1-2(in Chinese). [6] PENG Z L, ZHANG D Y, ZHANG X Y. Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3535-3549. [7] LEE J, CHANG P H, JIN M L. An adaptive gain dynamics for time delay control improves accuracy and robustness to significant payload changes for robots[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3076-3085. [8] BIAGIOTTI L, MORIELLO L, MELCHIORRI C. Improving the accuracy of industrial robots via iterative reference trajectory modification[J]. IEEE Transactions on Control Systems Technology, 2020, 28(3): 831-843. [9] 石章虎, 何晓煦, 曾德标, 等. 基于误差相似性的移动机器人定位误差补偿[J]. 航空学报, 2020, 41(11): 428-439. SHI Z H, HE X X, ZENG D B, et al. Error compensation method for mobile robot positioning based on error similarity[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 428-439(in Chinese). [10] 曾远帆, 廖文和, 田威. 面向精度补偿的工业机器人采样点多目标优化[J]. 机器人, 2017, 39(2): 239-248. ZENG Y F, LIAO W H, TIAN W. Multi-objective optimization of samples for industrial robot error compensation[J]. Robot, 2017, 39(2): 239-248(in Chinese). [11] 倪鹤鹏. 机器人铣削加工轨迹规划与颤振稳定性研究[D]. 济南: 山东大学, 2019: 11-14. NI H P. Research on trajectory planning and chatter stability of robotic milling[D].Ji’nan: Shandong University, 2019: 11-14(in Chinese). [12] PAN Z X, ZHANG H, ZHU Z Q, et al. Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology, 2006, 173(3): 301-309. [13] TLUSTY J. Manufacturing processes and equipment[M]. Upper Saddle River: Prentice Hall, 1999: 223-225. [14] ALTINTAS Y. Manufacturing automation:Metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge: Cambridge University Press, 2012: 145-148. [15] YUAN L, PAN Z X, DING D H, et al. A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2240-2251. [16] 王战玺, 张晓宇, 李飞飞, 等. 机器人加工系统及其切削颤振问题研究进展[J]. 振动与冲击, 2017, 36(14): 147-155, 188. WANG Z X, ZHANG X Y, LI F F, et al. Review on the research developments of robot machining systems and cutting chatter behaviors[J]. Journal of Vibration and Shock, 2017, 36(14): 147-155, 188(in Chinese). [17] ROUKEMA J C, ALTINTAS Y. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation[J]. International Journal of Machine Toolsand Manufacture, 2007, 47(9): 1455-1473. [18] GUO Y J, DONG H Y, WANG G F, et al. Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools and Manufacture, 2016, 101: 102-110. [19] ZHENG Z P, JIN X, SUN Y W, et al. Prediction of chatter stability for enhanced productivity in parallel orthogonal turn-milling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(9-10): 2377-2388. [20] NAM S, HAYASAKA T, JUNG H, et al. Proposal of novel chatter stability indices of spindle speed variation based on its chatter growth characteristics[J]. Precision Engineering, 2020, 62: 121-133. [21] WANG G F, DONG H Y, GUO Y J, et al. Chatter mechanism and stability analysis of robotic boring[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 411-421. [22] SUN L J, ZHENG K, LIAO W H, et al. Investigation on chatter stability of robotic rotary ultrasonic milling[J]. Robotics and Computer Integrated Manufacturing, 2020, 63: 101911. [23] 隋翯, 张德远, 陈华伟, 等. 超声振动切削对耦合颤振的影响[J]. 航空学报, 2016, 37(5): 1696-1704. SUI H, ZHANG D Y, CHEN H W, et al. Influence of ultrasonic vibration cutting on mode-coupling chatter[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1696-1704(in Chinese). [24] WAN M, MA Y C, ZHANG W H, et al. Study on the construction mechanism of stability lobes in milling process with multiple modes[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 589-603. [25] HE F X, LIU Y, LIU K. A chatter-free path optimization algorithm based on stiffness orientation method for robotic milling[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9-12): 2739-2750. [26] MOUSAVI S, GAGNOL V, BOUZGARROU B C, et al. Dynamic modeling and stability prediction in robotic machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12): 3053-3065. [27] CELIKAG H, OZTURK E, SIMS N D. Can mode coupling chatter happen in milling?[J]. International Journal of Machine Tools and Manufacture, 2021, 165: 103738. [28] 伍健. 工业机器人不同姿态下的刚度与铣削颤振研究[D]. 长春: 吉林大学, 2020: 5-7. WU J. Research on the stiffness and milling chatter of industrial robot in different configurations[D]. Changchun: Jilin University, 2020: 5-7(in Chinese). [29] LOPES A M. Complete dynamic modelling of a moving base 6-dof parallel manipulator[J]. Robotica, 2010, 28(5): 781-793. [30] MOHAN A, SINGH S P, SAHA S K. A cohesive modeling technique for theoretical and experimental estimation of damping in serial robots with rigid and flexible links[J]. Multibody System Dynamics, 2010, 23(4): 333-360. [31] 李宇庭. 机器人多轴铣削刀尖频响快速预测及颤振稳定性分析[D]. 武汉: 华中科技大学, 2018: 8-10. LI Y T. Rapid dynamics prediction of tool tip and analysis of the chatter stability in robotic milling system[D]. Wuhan: Huazhong University of Science and Technology, 2018: 8-10(in Chinese). [32] WANG X Y, MILLS J K. Experimental identification of configuration dependent linkage vibration in a parallel robot using smart material actuators and sensors[J]. Transactions of the Canadian Society for Mechanical Engineering, 2007, 31(1): 57-73. [33] BEHI F, TESAR D. Parametric identification for industrial manipulators using experimental modal analysis[J]. IEEE Transactions on Robotics and Automation, 1991, 7(5): 642-652. [34] QIN Z K, BARON L, BIRGLEN L. A new approach to the dynamic parameter identification of robotic manipulators[J]. Robotica, 2010, 28(4): 539-547. [35] 静大海, 刘晓平. 机器人关节面时变物理参数在线识别的谐波传播法[J]. 机械工程学报, 2009, 45(3): 296-301. JING D H, LIU X P. On-lineidentification of time-varying physical parameters of robot joint based on harmonic propagation[J]. Journal of Mechanical Engineering, 2009, 45(3): 296-301(in Chinese). [36] 沈孝栋. 制孔机器人在钻削力作用下变形与振动的研究[D]. 南京: 南京航空航天大学, 2015: 16-20. SHEN X D. Thedeformation and vibration simulations of drilling robot when suffering drilling forces[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 16-20(in Chinese). [37] ALTINTAS Y, STEPAN G, BUDAK E, et al. Chatter stability of machining operations[J]. Journal of Manufacturing Science and Engineering, 2020, 142(11): 110801. [38] LI J, LI B, SHEN N Y, et al. Effect of the cutter path and the workpiece clamping position on the stability of the robotic milling system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 2919-2933. [39] SUN L J, LIAO W H, ZHENG K, et al. Stability analysis of robotic longitudinal-torsional composite ultrasonic milling[J]. Chinese Journal of Aeronautics, (2021-06-05)[2021-08-21]. https://doi.org/10.1016/j.cja.2021.06.006. [40] RAFIEIAN F, HAZEL B, LIU Z H. Regenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot arm[J]. Procedia CIRP, 2014, 14: 406-411. [41] CEN L J, MELKOTE S N. CCT-based mode coupling chatter avoidance in robotic milling[J]. Journal of Manufacturing Processes, 2017, 29: 50-61. [42] CORDES M, HINTZE W, ALTINTAS Y. Chatter stability in robotic milling[J]. Robotics and Computer Integrated Manufacturing, 2019, 55: 11-18. [43] SHI M R, QIN X D, LI H, et al. Cutting force and chatter stability analysis for PKM-based helical milling operation[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(11-12): 3207-3224. [44] ZHAO X, ZHENG L Y, LIU X Y, et al. Chatter stability prediction for multi-robots collaborative milling system[J]. Procedia CIRP, 2020, 93: 856-861. [45] SAFI S M, AMIRABADI H, LIRABI I, et al. A new approach for chatter prediction in robotic milling based on signal processing in time domain[J]. Applied Mechanics and Materials, 2013, 346: 45-51. [46] MEJRI S, GAGNOL V, LE T P, et al. Dynamic characterization of machining robot and stability analysis[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1-4): 351-359. [47] 刘宇, 何凤霞. 基于概率方法的机器人铣削加工颤振稳定性研究[J]. 东北大学学报(自然科学版), 2019, 40(5): 683-687. LIU Y, HE F X. Study on the chatter stability of robotic milling based on the probability method[J]. Journal of Northeastern University (Natural Science), 2019, 40(5): 683-687(in Chinese). [48] CELIKAG H, SIMS N D, OZTURK E. Chatter suppression in robotic milling by control of configuration dependent dynamics[J]. Procedia CIRP, 2019, 82: 521-526. [49] TOH C K. Vibration analysis in high speed rough and finish milling hardened steel[J]. Journal of Sound and Vibration, 2004, 278(1-2): 101-115. [50] ZHANG Z, LI H G, MENG G, et al. Chatter detection in milling process based on the energy entropy of VMD and WPD[J]. International Journal of Machine Tools and Manufacture, 2016, 108: 106-112. [51] NAIR U, KRISHNA B M, NAMBOOTHIRI V N N, et al. Permutation entropy based real-time chatter detection using audio signal in turning process[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46(1-4): 61-68. [52] THALER T, POTOČNIK P, BRIC I, et al. Chatter detection in band sawing based on discriminant analysis of sound features[J]. Applied Acoustics, 2014, 77: 114-121. [53] LAMRAOUI M, THOMAS M, EL BADAOUI M. Cyclostationarity approach for monitoring chatter and tool wear in high speed milling[J]. Mechanical Systems and Signal Processing, 2014, 44(1-2): 177-198. [54] LIU C F, ZHU L D, NI C B. Chatter detection in milling process based on VMD and energy entropy[J]. Mechanical Systems and Signal Processing, 2018, 105: 169-182. [55] SHAO Y M, DENG X, YUAN Y L, et al. Characteristic recognition of chatter mark vibration in a rolling mill based on the non-dimensional parameters of the vibration signal[J]. Journal of Mechanical Science and Technology, 2014, 28(6): 2075-2080. [56] LIU Y, WANG X F, LIN J, et al. Early chatter detection in gear grinding process using servo feed motor current[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12): 1801-1810. [57] LIU H Q, CHEN Q H, LI B, et al. On-line chatter detection using servo motor current signal in turning[J]. Science China Technological Sciences, 2011, 54(12): 3119-3129. [58] TANSEL I N, LI M, DEMETGUL M, et al. Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR)[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(1-4): 109-118. [59] TAYLOR F W. On the art of cutting metals[M]. New York: The American Society of Mechanical Engineers, 1907: 69-72. [60] 王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23. WANG Z X, LIU X L, LI M Y, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020, 56(24): 1-23(in Chinese). [61] ZHU Z R, TANG X W, CHEN C, et al. High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends[J]. Chinese Journal of Aeronautics, (2021-01-12)[2021-08-21]. https://doi.org/10.1016/j.cja.2020.12.030. [62] 董辉跃, 吴杨宝, 郭英杰, 等. 机器人精镗飞机交点孔的颤振分析与识别[J]. 浙江大学学报(工学版), 2018, 52(8): 1517-1525. DONG H Y, WU Y B, GUO Y J, et al. Chatter analysis and identification in robotic fine boring of aircraft intersection holes[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(8): 1517-1525(in Chinese). [63] WANG G F, DONG H Y, GUO Y J, et al. Early chatter identification of robotic boring process using measured force of dynamometer[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1-4): 1243-1252. [64] CEN L J, MELKOTE S N, CASTLE J, et al. A method for mode coupling chatter detection and suppression in robotic milling[J]. Journal of Manufacturing Science and Engineering, 2018, 140(8): 081015. [65] WANG Y, ZHANG M K, TANG X W, et al. A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot[J]. Journal of Intelligent Manufacturing, 2021: 1-20. [66] 王桃章, 王宇, 王宇斐, 等. 深度学习在机器人加工颤振辨识中的应用[J]. 机械科学与技术, 2021, 40(2): 188-192. WANG T Z, WANG Y, WANG Y F, et al. Application of deep learning in robot milling chattering identification[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 188-192(in Chinese). [67] TAO J F, QIN C J, LIU C L. A synchroextracting-based method for early chatter identification of robotic drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4): 273-285. [68] TAO J F, QIN C J, XIAO D Y, et al. Timely chatter identification for robotic drilling using a local maximum synchrosqueezing-based method[J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1243-1255. [69] TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2755-2764. [70] WANG H, ZHAO W, LI B, et al. Dynamic analysis and robust reliability design of pan mechanism for a cooking robot[C]//2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2009: 1996-2001. [71] GUO Y J, DONG H Y, WANG G F, et al. Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools and Manufacture, 2016, 101: 102-110. [72] VON DRIGALSKI F, HAFI L E, ELJURI P M U, et al. Vibration-reducing end effector for automation of drilling tasks in aircraft manufacturing[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2316-2321. [73] CHEN F, ZHAO H. Design of eddy current dampers for vibration suppression in robotic milling[J]. Advances in Mechanical Engineering, 2018, 10(11): 1-15. [74] YUAN L, SUN S S, PAN Z X, et al. Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber[J]. Mechanical Systems and Signal Processing, 2019, 117: 221-237. [75] 郭伟华. 机器人旋转超声铣削铝合金工艺实验研究[D]. 南京: 南京理工大学, 2018: 28-39. GUO W H. Experimental research on rotating ultrasonic milling aluminum alloy by robot[D]. Nanjing: Nanjing University of Science and Technology, 2018: 28-39(in Chinese). [76] 郑侃, 廖文和, 孙连军, 等. 机器人纵振与纵扭超声铣削稳定性对比研究[J]. 机械工程学报, 2021, 57(7): 10-17. ZHENG K, LIAO W H, SUN L J, et al. Comparative study on stability of robotic longitudinal vibration and longitudinal-torsional ultrasonic milling[J]. Journal of Mechanical Engineering, 2021, 57(7): 10-17(in Chinese). [77] DONG S, ZHENG K, LIAO W H. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145: 346-352. [78] JI W, WANG L H. Industrial robotic machining: A review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 1239-1255. [79] 连学军. 面向大型风电叶片的机器人阻抗控制顺应打磨研究[D]. 武汉: 华中科技大学, 2017: 49-61. LIAN X J. The research of robot adaptable grinding large wind blade by impedance control[D].Wuhan: Huazhong University of Science and Technology, 2017: 49-61(in Chinese). [80] SHENG X J, ZHANG X. Fuzzy adaptive hybrid impedance control for mirror milling system[J]. Mechatronics, 2018, 53: 20-27. [81] 杨一帆. 基于阻抗控制的弱刚性构件双机器人协同磨抛技术研究[D]. 武汉: 华中科技大学, 2019: 22-42. YANG Y F. Research on cooperative grinding technology for weak rigid workpiece with dual-manipulators based on impendence control[D].Wuhan: Huazhong University of Science and Technology, 2019: 22-42(in Chinese). [82] ZAEH M F, ROESCH O. Improvement of the static and dynamic behavior of a milling robot[J]. International Journal of Automation Technology, 2015, 9(2): 129-133. [83] NGUYEN V, JOHNSON J, MELKOTE S. Active vibration suppression in robotic milling using optimal control[J]. International Journal of Machine Tools and Manufacture, 2020, 152: 103541. [84] WU H P, WANG Y B, LI M, et al. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance[J]. Fusion Engineering and Design, 2014, 89(9-10): 2357-2362. [85] 刘海涛. 工业机器人的高速高精度控制方法研究[D]. 广州: 华南理工大学, 2012: 30-47. LIU H T. Research on high-speed and high-precision controlof industrial robots[D]. Guangzhou: South China University of Technology, 2012: 30-47(in Chinese). [86] WANG Q L, WANG W, ZHENG L Y, et al. Force control-based vibration suppression in robotic grinding of large thin-wall shells[J]. Robotics and Computer Integrated Manufacturing, 2021, 67: 102031. [87] CHEN F, ZHAO H, LI D W, et al. Contact force control and vibration suppression in robotic polishing with a smart end effector[J]. Robotics and Computer Integrated Manufacturing, 2019, 57: 391-403. [88] 岳克双. 基于六维力传感器的协作型六自由度机器人控制系统研究[D]. 秦皇岛: 燕山大学, 2017: 76-91. YUE K S. Research on cooperative 6-DOF robot control system based on six-axis force sensor[D].Qinhuangdao: Yanshan University, 2017: 76-91(in Chinese). [89] 邱磊. 发动机叶片表面的机器人精密磨削加工[D]. 杭州: 浙江工业大学, 2019: 3-8. QIU L. Robotic precision grinding of engine blade surface[D]. Hangzhou: Zhejiang University of Technology, 2019: 3-8(in Chinese). [90] 余汉林. 面向叶片机器人砂带磨抛加工的主被动力控制技术研究[D]. 武汉: 华中科技大学, 2018: 45-65. YU H L. Theresearch on robotic belt grinding of blade with combination of active and passive compliant force control technology[D]. Wuhan: Huazhong University of Science and Technology, 2018: 45-65(in Chinese). [91] 郭英杰. 基于工业机器人的飞机交点孔精镗加工关键技术研究[D]. 杭州: 浙江大学, 2016: 92-101. GUO Y J. Study on key techniques of aircraft intersection holes fine boring based on industrial robot[D]. Hangzhou: Zhejiang University, 2016: 92-101(in Chinese). [92] 王桂锋. 工业机器人精镗飞机交点孔颤振研究及其数值模拟分析[D]. 杭州: 浙江大学, 2017: 1-3. WANG G F. Study on chatter performance of aircraft intersection holes fine boring and its numerical simulation analysis[D]. Hangzhou: Zhejiang University, 2017: 1-3(in Chinese). [93] DONG S, LIAO W H, ZHENG K, et al. Investigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacks[J]. International Journal of Mechanical Sciences, 2019, 151: 868-876. |