王彬文1, 杨宇1, 钱战森2, 王志刚1, 吕帅帅1, 孙侠生3
收稿日期:
2020-11-02
修回日期:
2020-12-15
出版日期:
2022-01-15
发布日期:
2020-12-14
通讯作者:
杨宇
E-mail:18313341@qq.com
WANG Binwen1, YANG Yu1, QIAN Zhansen2, WANG Zhigang1, LYU Shuaishuai1, SUN Xiasheng3
Received:
2020-11-02
Revised:
2020-12-15
Online:
2022-01-15
Published:
2020-12-14
摘要: 通过改变机体结构气动外形,确保飞行器在不同飞行状态下持续获得最优气动效益,一直是航空领域的研究热点,而机翼变弯度(VCW)技术是其中一个重要研究方向。首先,分析总结了机翼变弯度技术所带来的综合收益,详细阐述了不同飞行器对机翼变弯度技术的具体需求;然后,分别从变弯度前缘和后缘回顾了过去数十年的发展历程,分析了当前面临的主要技术难点;最后,预测了未来发展趋势,并对机翼变弯度技术的未来研究方向提出了建议。
中图分类号:
王彬文, 杨宇, 钱战森, 王志刚, 吕帅帅, 孙侠生. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1): 24943.
WANG Binwen, YANG Yu, QIAN Zhansen, WANG Zhigang, LYU Shuaishuai, SUN Xiasheng. Technical development of variable camber wing: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 24943.
[1] THILL C, ETCHES J, BOND I, et al. Morphing skins[J]. The Aeronautical Journal, 2008, 112(1129): 117-139. [2] BENSON T. Wright Brothers’ wing warping[EB/OL].(2020-11-01)[2020-11-02].http://wright.nasa.gov/airplane/warp.html [3] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. [4] POONSONG P. Design and analysis of a multi-section variable camber wing[D]. College Park: University of Maryland, 2004. [5] 刘谦, 杨玉岭. 欧美变形机翼技术发展追踪[J]. 国际航空, 2020(5): 61-64. LIU Q, YANG Y L. Morphing wing technology in the US and Europe[J]. International Aviation, 2020(5): 61-64(in Chinese). [6] VALASEK J. Morphing aerospace vehicles and structures[M]. Chichester: John Wiley & Sons, Ltd, 2012. [7] Smart wings morphing NASA[EB/OL].(2020-11-01)[2020-11-02].https://www.youtube.com/watch?v=goL5vYjyZtM. [8] MCGOWAN A M R,VICROY D D, HAHN R C,et al. Perspectives on highly adaptive or morphing aircraft:RTO-MP-AVT-168[R].Washington,D.C.:NASA,2009. [9] SATTI R, LI Y B, SHOCK R, et al. Computational aeroacoustic analysis of a high-lift configuration[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. [10] MONNER H, KINTSCHER M, LORKOWSKI T, et al. Design of a smart droop nose as leading edge high lift system for transportation aircrafts[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2128. [11] RUDOLPH P K C. High-lift systems on commercial subsonic airliners:NASA-CR-4746[R]. Washington,D.C.:NASA, 1996. [12] HORSTMANN H K. TELFONA, contribution to laminar wing development for future transport aircraft[C]//Aeronautical Days, 2006. [13] Airbus "BLADE" laminar flow wing demonstrator makes first flight[EB/OL].(2017-09-30)[2020-11-02].https://www.airbus.com/newsroom/press-releases/en/2017/09/airbus-blade-laminar-flow-wing-demonstrator-makes-first-fligh.html [14] KINTSCHER M, WIEDEMANN M, MONNER H P, et al. Design of a smart leading edge device for low speed wind tunnel tests in the European project SADE[J]. International Journal of Structural Integrity, 2011, 2(4): 383-405. [15] https://www.zhihu.com/question/355274833 [16] CONCILIO A, DIMINO I, PECORA R. SARISTU: Adaptive Trailing Edge Device(ATED) design process review[J]. Chinese Journal of Aeronautics, 2021, 34(7): 187-210. [17] North Atlantic Systems Planning Group, "NORTH ATLANTIC MNPS AIRSPACE OPERATIONS MANUAL," Tech. rep., ICAO European and North Atlantic Office, September 2009. [18] RISSE K, ANTON E, LAMMERING T, et al. An integrated environment for preliminary aircraft design and optimization[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012: 1675. [19] Boeing: 787 By Design[EB/OL].(2020-11-01)[2020-11-02]https://www.boeing.com/commercial/787/by-design [20] Wings |Airbus a350 XWB[EB/OL].(2020-11-01)[2020-11-02]http://www.airbus-a350.com/the-aircraft/wings.php [21] HETRICK J, OSBORN R, KOTA S, et al. Flight testing of mission adaptive compliant wing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1709. [22] GREG E C H, CHRIS J, BRIAN K,et al. Morphing aircraft design[M].Washington,D.C.: Virginia Tech Aerospace Engineering, 2002. [23] MILLER E J,LOKOS W A, CRUZ J,et al. Approach for structurally clearing an adaptive compliant trailing edge flap for flight[C]//46th SFTE Annual International Symposium, 2015. [24] MONNER H P, BEIN T, HANSELKA H,et al. Design aspects of the adaptive wing-the elastic trailing edge and the local spoiler bump[J]. The Aeronautical Journal, 2000, 104(1032):1-10. [25] PETER F N, RISSE K, SCHUELTKE F, et al. Variable camber impact on aircraft mission planning[C]//53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1902. [26] DECAMP R, HARDY R. Mission adaptive wing advanced research concepts[C]//11th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1984: 2088. [27] KOTA S. Future Airplanes Will Fly On Twistable Wings Replacing traditional flaps with bendable bits will reduce noise and save fuel[EB/OL].Future Airplanes Will Fly On Twistable Wings-IEEE Spectrum,2016. [28] GILBERT W. Development of a mission adaptive wing system for a tactical aircraft[C]//Aircraft Systems Meeting. Reston: AIAA, 1980: 1886. [29] COLE J B. Variable camber airfoil: United States Patent 3994451[P]. 1976-11-30. [30] RENKEN J. Mission-adaptive wing camber control systems for transport aircraft[C]//3rd Applied Aerodynamics Conference. Reston: AIAA, 1985: 5006. [31] PAVLENKO O P A, PIGUSOV E. Concept of medium twin-engine stol transport airplane: ICAS_0104[R].ICAS,2018. [32] 刘影, 李春鹏, 张铁军, 等. 后缘连续偏转机翼振荡射流控制的数值模拟研究[J]. 航空科学技术, 2020, 31(5): 36-43. LIU Y, LI C P, ZHANG T J, et al. Numerical simulation of oscillating jet control for trailing edge continuous deflection WingFull text replacement[J]. Aeronautical Science & Technology, 2020, 31(5): 36-43(in Chinese). [33] SHMILOVICH A, YADLIN Y, DICKEY E D, et al. Development of an active flow control technique for an airplane high-lift configuration[C]//55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017: 0322. [34] KOTA S, HETRICK J A, OSBORN R, et al. Design and application of compliant mechanisms for morphing aircraft structures[C]//Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies. SPIE, 2003. [35] VASISTA S, NOLTE F, MONNER H P, et al. Three-dimensional design of a large-displacement morphing wing droop nose device[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(16): 3222-3241. [36] SCHORSCH O, LVHRING A, NAGEL C. Elastomer-based skin for seamless morphing of adaptive wings[M]//Smart Intelligent Aircraft Structures(SARISTU). Cham: Springer International Publishing, 2015: 187-197. [37] ANTONIO C I D, MONICA C, ROSARIO P, et al. Morphing wing technologies[M]. Amsterdam Elsevier Ltd, 2018. [38] GINGER G. AFRL camber morphing wing takes flight[EB/OL].(2020-11-01)[2020-11-02].https://www.compositesworld.com/news/afrl-camber-morphing-wing-takes-flight [39] Clean Sky’s Morphing Wing project brings shape-shifting capabilities to European regional aircraft[EB/OL].(2020-11-01)[2020-11-02].https://www.cleansky.eu/clean-skys-morphing-wing-project-brings-shape-shifting-capabilities-to-european-regional-aircraft [40] NASA Flight Tests Advance Research of Flexible, Twistable Wing Flaps for Improved Aerodynamic Efficiency[EB/OL].(2020-11-01)[2020-11-02].https://www.nasa.gov/feature/nasa-flight-tests-advance-research-of-flexible-twistable-wing-flaps-for-improved-aerodynamic. [41] JAKUBINEK M, ROY S, PALARDY-SIM M, et al. Stretchable structure for a benchtop-scale morphed leading edge demonstration[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019. [42] CHEUNG K, CELLUCCI D, COPPLESTONE G, et al. Development of mission adaptive digital composite aerostructure technologies(MADCAT)[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 4273. [43] 姚艳玲, 黄春峰. 先进变循环发动机技术研究[J]. 航空制造技术, 2012, 55(S2): 106-109. YAO Y L, HUANG C F. Research on advanced variable cycle engine[J]. Aeronautical Manufacturing Technology, 2012, 55(Sup.2): 106-109(in Chinese). [44] GANGULI R, THAKKAR D, VISWAMURTHY S R. Mathematical modeling[M]//Smart Helicopter Rotors. Cham: Springer International Publishing, 2015: 41-70. [45] SHAW A D, DAYYANI I, FRISWELL M I. Optimisation of composite corrugated skins for buckling in morphing aircraft[J]. Composite Structures, 2015, 119: 227-237. [46] MENG X G, SUN M. Aerodynamic effects of corrugation in flapping insect wings in forward flight[J]. Journal of Bionic Engineering, 2011, 8(2): 140-150. [47] DAYYANI I, SHAW A D, SAAVEDRA FLORES E I, et al. The mechanics of composite corrugated structures: A review with applications in morphing aircraft[J]. Composite Structures, 2015, 133: 358-380. [48] URSACHE N M, MELIN T, ISIKVEREN A T, et al. Technology integration for active poly-morphing winglets development[C]//Proceedings of ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2009: 775-782. [49] OLYMPIO K R, GANDHI F. Optimal cellular core topologies for one-dimensional morphing aircraft structures[J]. Journal of Mechanical Design, 2012, 134(8): 081005. [50] OLYMPIO K R, GANDHI F. Zero poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1737-1753. [51] OLYMPIO K R, GANDHI F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1719-1735. [52] CHEN J J, SHEN X, LI J F. Zero Poisson's ratio flexible skin for potential two-dimensional wing morphing[J]. Aerospace Science and Technology, 2015, 45: 228-241. [53] PERKINS D, REED J, HAVENS E. Morphing wing structures for loitering air vehicles[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004: 1888. [54] BYE D, MCCLURE P. Design of a morphing vehicle[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Str-uctural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1728. [55] SUN J, LIU Y J, LENG J S. Mechanical properties of shape memory polymer composites enhanced by elastic fibers and their application in variable stiffness morphing skins[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(15): 2020-2027. [56] YIN W L, SUN Q J, ZHANG B, et al. Seamless morphing wing with SMP skin[J]. Advanced Materials Research, 2008, 47-50: 97-100. [57] KINTSCHER M. Method for the pre-design of a smart droop nose device using a simplex optimization scheme[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 2009. [58] RIEMENSCHNEIDER J, RADESTOCK M, VASISTA S, et al. Droop nose with elastic skin[C]//Proceedings of ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2016. [59] WANG C, HADDAD KHODAPARAST H, FRISWELL M I, et al. Conceptual-level evaluation of a variable stiffness skin for a morphing wing leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(15): 5703-5716. [60] THUWIS G A A, ABDALLA M M, GVRDAL Z. Optimization of a variable-stiffness skin for morphing high-lift devices[J]. Smart Materials & Structures, 2010, 19(12): 124010. [61] YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7): 271-278. [62] KINTSCHER M, GEIER S, MONNER H P, et al. Investigation of multi-material laminates for smart droop nose devices[C]//29th Congress of the International Council of the Aeronautical Sciences, 2014. [63] CHARY C. Development and validation of a bird strike protection system for an enhanced adaptive droop nose[M]//Smart Intelligent Aircraft Structures(SARISTU). Cham: Springer International Publishing, 2015: 71-83. [64] MONNER H P, RUDENKO A. On an efficient implementation of non-linear structural optimization for the morphing leading edge of an active blown high lift system[C]//26th International Conference on Adaptive Structures and Technologies, 2015. [65] BENDSØE M P, SIGMUND O. Topology optimization: Theory, method and applications[M].Berlin: Springer, 2003. [66] RUDENKO A, MONNER H P, ROSE M. A process chain for structural optimization of a smart droop nose for an active blown high lift system[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston: AIAA, 2014: 1414. [67] LU K J, KOTA S. An effective method of synthesizing compliant adaptive structures using load path representation[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(4): 307-317. [68] DE GASPARI A, RICCI S. A two-level approach for the optimal design of morphing wings based on compliant structures[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 1091-1111. [69] SANTER M, PELLEGRINO S. Topological optimization of compliant adaptive wing structure[J]. AIAA Journal, 2009, 47(3): 523-534. [70] 葛文杰, 朱鹏刚, 刘世丽, 等. 基于柔性机构的机翼前缘变形多目标优化[J]. 西北工业大学学报, 2010, 28(2): 211-217. GE W J, ZHU P G, LIU S L, et al. Exploring further multi-objective optimization for shape change of aircraft leading edge using compliant mechanisms[J]. Journal of Northwestern Polytechnical University, 2010, 28(2): 211-217(in Chinese). [71] 陈秀, 葛文杰, 张永红, 等. 基于遗传算法的柔性机构形状变化综合优化研究[J]. 航空学报, 2007, 28(5): 1230-1235. CHEN X, GE W J, ZHANG Y H, et al. Investigation on synthesis optimization for shape morphing compliant mechanisms using GA[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1230-1235(in Chinese). [72] VASISTA S, DE GASPARI A, RICCI S, et al. Compliant structures-based wing and wingtip morphing devices[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(2): 311-330. [73] 吕帅帅, 王彬文, 杨宇, 等. 基于遗传算法的机翼柔性蒙皮全参数优化设计[J]. 应用力学学报, 2020, 37(2): 617-623, 931. LYU S S, WANG B W, YANG Y, et al. Normal optimization design of flexible skin of airfoil based on genetic algorithm[J]. Chinese Journal of Applied Mechanics, 2020, 37(2): 617-623, 931(in Chinese). [74] 吕帅帅, 王彬文, 杨宇. 三维变弯度机翼前缘柔性蒙皮优化设计[J]. 应用数学和力学, 2020, 41(6): 604-614. LYU S S, WANG B W, YANG Y. Optimal design of flexible skin on the leading edge of a 3D variable-camber wing[J]. Applied Mathematics and Mechanics, 2020, 41(6): 604-614(in Chinese). [75] SCHMITZ A, HORST P. A new curvature morphing Skin: Manufacturing, experimental and numerical investigations[C]//ECCM16-16th European Conference on Composite Materials, 2014. [76] FORTIN F. Shape optimization of a stretchable drooping leading edge[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 2352. [77] JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]//Smart Structures and Materials. Proc SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, 2004, 5388: 213-224. [78] BONNEMA K, SMITH S. AFTI/F-111 Mission Adaptive Wing flight research program[C]//4th Flight Test Conference. Reston: AIAA, 1988: 2118. [79] KOTA S, HETRICK J, JR R F. Adaptive structures: Moving into the mainstream[J]. Aerospace America, 2006, 44(9): 16-18. [80] DECAMP R W, HARDY R. Mission adaptive wing research programme[J]. Aircraft Engineering and Aerospace Technology, 1981, 53(1): 10-11. [81] PASTOR C, SANDERS B, JOO J J, et al. Kinematically designed flexible skins for morphing aircraft[C]//Proceedings of ASME 2006 International Mechanical Engineering Congress and Exposition. New York: ASME, 2007: 89-95. [82] KOTA S. Future airplanes will fly on twistable wings[EB/OL].(2020-11-01)[2020-11-02]https://spectrum.ieee.org/aerospace/aviation/future-airplanes-will-fly-on-twistable-wings [83] KUDVA J N, JARDINE A P, MARTIN C A, et al. Overview of the ARPA/WL "smart structures and materials development-smart wing" contract[C]//1996 Symposium on Smart Structures and Materials. Proc SPIE 2721, Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, 1996, 2721: 10-16. [84] CAMPANILE L F, SACHAU D. The belt-rib concept: A structronic approach to variable camber[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(3): 215-224. [85] KUDVA J N, APPA K, VAN WAY C B, et al. Adaptive smart wing design for military aircraft: Requirements, concepts, and payoffs[C]//Smart Structures and Materials ’95. Proc SPIE 2447, Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies, 1995, 2447: 35-44. [86] BARTLEY-CHO J D, WANG D P, MARTIN C A, et al. Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 279-291. [87] CAMPANILE L F. Modal synthesis of flexible mechanisms for airfoil shape control[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(7): 779-789. [88] SINAPIUS M, MONNER H P, KINTSCHER M, et al. DLR’s morphing wing activities within the European network[J]. Procedia IUTAM, 2014, 10: 416-426. [89] LUO Z, LUO Q T, TONG L Y, et al. Shape morphing of laminated composite structures with photostrictive actuators via topology optimization[J]. Composite Structures, 2011, 93(2): 406-418. [90] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [91] KIM D, CAPPS R, PHILEN M. Morphing trailing edge control using flexible matrix composite actuators[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012: 1509. [92] WOODS B K S, FRISWELL M I. Preliminary investigation of a fishbone active camber concept[C]//Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2013: 555-563. [93] SUN J, GONG X B, LIU Y J, et al. Variable camber wing based on shape memory polymer skin[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013. [94] RIVERO A E, WEAVER P M, COOPER J E, et al. Structural modeling of compliance-based camber morphing structures under transverse shear loading[J]. AIAA Journal, 2020, 58(11): 4941-4951. [95] RIVERO A E, WEAVER P M, COOPER J E, et al. Parametric structural modelling of fish bone active camber morphing aerofoils[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9): 2008-2026. [96] CHRISTINE F. Inspired by fish by christine fisher|February 2020[EB/OL].(2020-11-01)[2020-11-02]. https://aerospaceamerica.aiaa.org/departments/inspired-by-fish/ [97] MONNER H P. Realization of an optimized wing camber by using formvariable flap structures[J]. Aerospace Science and Technology, 2001, 5(7): 445-455. [98] BARBARINO S, PECORA R, LECCE L, et al. Airfoil structural morphing based on S.M.A. actuator series: Numerical and experimental studies[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10): 987-1004. [99] KARAGIANNIS D, STAMATELOS D, SPATHOPOULOS T, et al. Airfoil morphing based on SMA actuation technology[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(4): 295-306. [100] ICARDI U, FERRERO L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators[J]. Materials & Design, 2009, 30(10): 4200-4210. [101] DIODATI G, CONCILIO A, RICCI S, et al. Estimated performance of an adaptive trailing-edge device aimed at reducing fuel consumption on a medium-size aircraft[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Proc SPIE 8690, Industrial and Commercial Applications of Smart Structures Technologies 2013, 2013, 8690: 123-138. [102] GIANLUCA D.Actuation system design and test for an adaptive trailing edge morphing device[D].Roma: University of Roma, 2016. [103] PECORA R. Morphing wing flaps for large civil aircraft: The CleanSky-GRA Challenge[C]//Smart Aircraft, 2019. [104] HOWELL L L, MIDHA A. A loop-closure theory for the analysis and synthesis of compliant mechanisms[J]. Journal of Mechanical Design, 1996, 118(1): 121-125. [105] CAMPANILE L F. Initial thoughts on weight penalty effects in shape-adaptable systems[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(1): 47-56. [106] PEEL L D, MEJIA J, NARVAEZ B, et al. Development of a simple morphing wing using elastomeric composites as skins and actuators[J]. Journal of Mechanical Design, 2009, 131(9): 091003. [107] REDDY R A, HINGLAJIA D D, MODI A, et al. Morphing airfoil with thermally activated SMA actuators[J]. ISSS Journal of Micro and Smart Systems, 2017, 6(1): 29-45. [108] KANG W R, KIM E H, JEONG M S, et al. Morphing wing mechanism using an SMA wire actuator[J]. International Journal of Aeronautical and Space Sciences, 2012, 13(1): 58-63. [109] WILDSCHEK A, JUDAS M, AVERSA N, et al. Multi-functional morphing trailing edge for control of all-composite, all-electric flying wing aircraft[C]//The 26th Congress of ICAS and 8th AIAA ATIO. Reston: AIAA, 2008: 8956. [110] DIMINO I C M, CONCILIO A, SCHUELLER M, et al. Control system design for a morphing wing trailing edge[J].Recent Patents on Mechanical Engineering,2017,7(2):138-148. [111] 赵飞, 葛文杰, 张龙. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8): 19-22. ZHAO F, GE W J, ZHANG L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8): 19-22(in Chinese). [112] BILGEN O, KOCHERSBERGER K, DIGGS E, et al. Morphing wing micro-air-vehicles via macro-fiber-composite actuators[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1785. [113] BILGEN O, BUTT L, DAY S, et al. A novel unmanned aircraft with solid-state control surfaces: Analysis and flight demonstration[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011: 2071. [114] MUNDAY D, JACOB J. Active control of separation on a wing with conformal camber[C]//39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. [115] PARADIES R, CIRESA P. Active wing design with integrated flight control using piezoelectric macro fiber composites[J]. Smart Materials & Structures, 2009, 18(3): 035010. [116] VOS R, DE BREUKER R, BARRETT R, et al. Morphing wing flight control via postbuckled precompressed piezoelectric actuators[J]. Journal of Aircraft, 2007, 44(4): 1060-1068. [117] WICKRAMASINGHE V, CHEN Y, MARTINEZ M, et al. Design and verification of a smart wing for an extremely-agile micro-air-vehicle[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2132. [118] CRAMER N B, CELLUCCI D W, FORMOSO O B, et al. Elastic shape morphing of ultralight structures by programmable assembly[J]. Smart Materials and Structures, 2019, 28(5): 055006. [119] MAJJI M, REDINIOTIS O, JUNKINS J. Design of a morphing wing: Modeling and experiments[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2007: 6310. [120] CHEUNG K C, GERSHENFELD N. Reversibly assembled cellular composite materials[J]. Science, 2013, 341(6151): 1219-1221. [121] CRAMER N B, SWEI S S M, CHEUNG K, et al. Application of transfer matrix approach to modeling and decentralized control of lattice-based structures[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015. [122] SCHAEDLER T A, CARTER W B. Architected cellular materials[J]. Annual Review of Materials Research, 2016, 46: 187-210. [123] NICK C M C, KENNETH C C, BENJAMIN J, et al.Design and testing of a cellular composite active twist wing[C]//24th AIAA/AHS Adaptive Structures Conference. Reston:AIAA,2016. [124] JENETT B, CELLUCCI D, GREGG C, et al. Meso-scale digital materials: Modular, reconfigurable, lattice-based structures[C]//Proceedings of ASME 201611th International Manufacturing Science and Engineering Conference.New York:ASME, 2016. [125] CRAMER N B, SWEI S S M, CHEUNG K, et al. Lattice-based discrete structure modeling and control for large flexible space structure applications[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017. [126] FRENZEL T, KADIC M, WEGENER M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366): 1072-1074. [127] GREGG C E, KIM J H, CHEUNG K C. Ultra-light and scalable composite lattice materials[J]. Advanced Engineering Materials, 2018, 20(9): 1800213. [128] TABATABAEI M, ATLURI S N. Ultralight cellular composite materials with architected geometrical structure[J]. Composite Structures, 2018, 196: 181-198. [129] GREGG C E, JENETT B, CHEUNG K C. Assembled, modular hardware architectures-what price reconfigurability?[C]//2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019: 1-10. [130] CRAMER N B, JENETT B, SWEI SEANS M, et al. Design approximation and proof test methods for a cellular material structure[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 1861. [131] CRAMER N B, KIM J, GREGG C, et al. Modeling of tunable elastic ultralight aircraft[C]//AIAA Aviation 2019 Forum. Reston: AIAA, 2019: 3159. [132] AAGE N, ANDREASSEN E, LAZAROV B S, et al. Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550(7674): 84-86. |
[1] | 陈树生, 贾苜梁, 刘衍旭, 高正红, 向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595-629595. |
[2] | 陈其昌, 史志伟, 张维源, 姚灵珑, 童晟翔. 展开式变体垂直起降飞行器气动布局与控制策略设计及飞行验证[J]. 航空学报, 2024, 45(6): 629583-629583. |
[3] | 李国强, 宋奎辉, 覃晨, 赵光银, 吴霖鑫, 杨永东. 基于后缘小翼的翼型动态失速主动控制试验[J]. 航空学报, 2024, 45(3): 128699-128699. |
[4] | 马高杰, 安刚, 史佑民, 康宁, 孙军帅. 民用飞机高升力系统先进技术及发展[J]. 航空学报, 2023, 44(S1): 727516-727516. |
[5] | 喻世杰, 周兴华, 黄锐. 变弯度机翼参数化气动弹性建模与颤振特性分析[J]. 航空学报, 2023, 44(8): 227346-227346. |
[6] | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335-127335. |
[7] | 武宇飞, 龙腾, 史人赫, 张尧. 跨域变体飞行器气动力热非层次多模型融合降阶方法[J]. 航空学报, 2023, 44(21): 528259-528259. |
[8] | 董杰忠, 楚武利, 张皓光, 罗波, 晏松. 基于因果网络分析的扩压叶栅波浪形前缘控制机理[J]. 航空学报, 2023, 44(19): 128336-128336. |
[9] | 任明, 刘存良, 杜昆, 张丽, 朱惠人, 张博伦. 弯扭涡轮叶片前缘复合角孔气膜冷却[J]. 航空学报, 2023, 44(18): 128315-128315. |
[10] | 王浩浩, 高丽敏, 杨光, 吴宝海. 一种鲁棒的数据驱动不确定性量化方法及在压气机叶栅中的应用[J]. 航空学报, 2023, 44(17): 128169-128169. |
[11] | 张良阳, 李占科, 韩海洋. 微型无人机栖息设计技术综述[J]. 航空学报, 2023, 44(12): 27573-027573. |
[12] | 唐超, 谢文俊, 袁培毓, 谢宗蕻. 翼面前缘共形电热除冰功能结构开发与验证[J]. 航空学报, 2023, 44(12): 427872-427872. |
[13] | 黄雄, 曲仕茹, 张恒, 陈显调. 大型客机增升构型缝翼除冰状态失速特性[J]. 航空学报, 2023, 44(1): 627077-627077. |
[14] | 张恒, 李杰, 赵宾宾. 结冰翼型前缘下垂变弯度容冰特性改善机制[J]. 航空学报, 2023, 44(1): 627114-627114. |
[15] | 刘俊, 罗新福, 王显圣. 前缘形状对空腔模型气动特性影响试验[J]. 航空学报, 2022, 43(7): 125235-125235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学