[1] PARR G R, EDWARDS R. Integrated modular avionics[J]. Air & Space Europe, 1999, 1(2):72-75. [2] SUO D J, AN J X, ZHU J H. A new approach to improve safety of reconfiguration in Integrated Modular Avionics[C]//2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2011:1C4-1. [3] FU J P, WANG S H, LIU B. An original approach to constructing test model for IMA blueprints[C]//2017 Second International Conference on Reliability Systems Engineering (ICRSE). Piscataway:IEEE Press, 2017:1-6. [4] JOLLIFFE G, NICHOLSON M. Exploring the possibilities towards a preliminary safety case for IMA blueprints[C]//Constituents of Modern System-Safety Thinking, 2005. [5] ZHOU T R, XIONQ H, ZHANG Z. Hierarchical resource allocation for integrated modular avionics systems[J]. Journal of Systems Engineering and Electronics, 2011, 22(5):780-787. [6] MONTANA D, HUSSAIN T, VIDAVER G. A genetic-algorithm-based reconfigurable scheduler[M]//Evolutionary Scheduling, 2007:577-611. [7] GIRAULT A, KALLA H, SIGHIREANU M, et al. An algorithm for automatically obtaining distributed and fault-tolerant static schedules[C]//2003 International Conference on Dependable Systems and Networks. Piscataway:IEEE Press, 2003:159-168. [8] OMIECINSKI T A. Reconfigurable integrated modular avionics[D]. Bristol:University of Bristol, 1999. [9] XU J H, PU H J, SUN Z K. Study of fault tolerance design for Integrated Modular Avionics system[C]//Proceedings of Korean Aerospace Society Academic Conference, 2011:1710-1714. [10] SUTTON R S, BARTO A G. Reinforcement learning:An introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5):1054. [11] WATKINS C J C H, DAYAN P. Q-learning[J]. Machine Learning, 1992, 8(3-4):279-292. [12] WANG R, PURSHOUSE R C, FLEMING P J. Preference-inspired coevolutionary algorithms for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(4):474-494. [13] 刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7):1246-1278. LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7):1246-1278(in Chinese). [14] CUI Y Q, SHI J Y, WANG Z L. Backward reconfiguration management for modular avionic reconfigurable systems[J]. IEEE Systems Journal, 2018, 12(1):137-148. [15] WANG R P, LU W T, ZENG C H, et al. Reliability modeling and verification method for dynamic reconfiguration system[C]//2018 Prognostics and System Health Management Conference (PHM-Chongqing). Piscataway:IEEE Press, 2018:941-947. [16] WEI X M, DONG Y W, XIAO M R. Safety-based software reconfiguration method for integrated modular avionics systems in AADL model[C]//2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). Piscataway:IEEE Press, 2018:450-455. [17] POURMOHSENI B, WILDERMANN S, GLAß M, et al. Hard real-time application mapping reconfiguration for NoC-based many-core systems[J]. Real-Time Systems, 2019, 55(2):433-469. [18] ZHANG Q, WANG S H, LIU B. Approach for integrated modular avionics reconfiguration modelling and reliability analysis based on AADL[J]. IET Software, 2016, 10(1):18-25. [19] DA FONTOURA A A, DO NASCIMENTO F A M, NADJM-TEHRANI S, et al. Timing assurance of avionic reconfiguration schemes using formal analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1):95-106. [20] GUO R, ZHONG D M, SUN R, et al. Optimized design of resource sharing and isolation for integrated modular avionics[C]//2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS). Piscataway:IEEE Press, 2019:444-447. [21] CLEMENTE J A, RAMO E P, RESANO J, et al. Configuration mapping algorithms to reduce energy and time reconfiguration overheads in reconfigurable systems[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(6):1248-1261. [22] WEGENER I. Simulated annealing beats metropolis in combinatorial optimization[C]//Automata, Languages and Programming, 2005. [23] SINGH H K, RAY T, SMITH W. C-PSA:Constrained Pareto simulated annealing for constrained multi-objective optimization[J]. Information Sciences, 2010, 180(13):2499-2513. [24] ZHANG Z S, XING L N, CHEN Y N, et al. Evolutionary algorithms for many-objective ground station scheduling problem[C]//Bio-Inspired Computing-Theories and Applications, 2016. [25] ZHANG T, CHEN J Y, LV D, et al. Automatic generation of reconfiguration blueprints for IMA systems using reinforcement learning[J]. IEEE Embedded Systems Letters, 2021, 99:1-4. [26] CHUAI G, ZHAO D, SUN L. Novel adaptive simulated annealing algorithm for constrained multi-objective optimization[J]. China Communications, 2012, 9(9):68-78(in Chinese). [27] CHENG Y, WANG H X, WENG Z Y, et al. Optimization of flow shop scheduling control strategy based on improved differential evolution algorithm[C]//2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Piscataway:IEEE Press, 2018:43-46. |