[1] 朱广生. 再入机动飞行器气动设计与实践[M]. 北京:中国宇航出版社, 2017. ZHU G S. Aerodynamic design and practice of reentry maneuvering vehicle[M]. Beijing:China Aerospace Press, 2017(in Chinese). [2] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1):7-23. YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23(in Chinese). [3] ROY C J, OBERKAMPF W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28):2131-2144. [4] 曾晓彬, 彭钧, 乐川. 一种飞行器投放分离气动力辨识修正方法[J]. 航空学报, 2016, 37(S1):S24-S31. ZENG X B, PENG J, YUE C. An aerodynamic identification and correction method for vehicle in release separation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S24-S31(in Chinese). [5] YAVUZTURK V N, TOPBAS E, YAZICIOGLU Y. Flight test maneuver design and aerodynamic parameter estimation for single use autonomous gliding air vehicles[C]//AIAA Atmospheric Flight Mechanics Conference, 2017. [6] TOL H J, DEVISSER C C, KAMPEN E V, et al. Nonlinear multivariate spline-based control allocation for high-performance aircraft[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1840-1862. [7] KUTLUARY U. Aerodynamic parameter estimation using flight test data[D]. Ankara:Middle East Technical University, 2011:27-37. [8] MORELLI E. Efficient global aerodynamic modeling from flight data[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012. [9] GARCIA A R, VOS R, DE VISSER C. Aerodynamic model identification of the flying V from wind tunnel data[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020. [10] GRAUER J A, MORELLI E A. Generic global aerodynamic model for aircraft[J]. Journal of Aircraft, 2015, 52(1):13-20. [11] HALE L E, PATIL M, ROY C J. Aerodynamic parameter identification and uncertainty quantification for small unmanned aircraft[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(3):680-691. [12] GRAUER J A. Real-time data-compatibility analysis using output-error parameter estimation[J]. Journal of Aircraft, 2015, 52(3):940-947. [13] GUPTA N K, HALL W E. System identification technology for estimating Re-entry vehicle aerodynamic coefficients[J]. Journal of Guidance, Control, and Dyamics, 1979, 2(2):139-146. [14] KARLGAARD C D, TARTABINI P V, BLANCHARD R C, et al. Hyper-X post-flight trajectory reconstruction[J]. Journal of Spacecraft and Rockets, 2006, 43(1):105-115. [15] MORELLI E. Practical aspects of the equation-error method for aircraft parameter estimation[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2006. [16] VAIOPOULOS P, ZOGOPOULOS-PAPALIAKOS G, KYRIAKOPOULOS K J. Online aerodynamic model identification on small fixed-wing UAVs with uncertain flight data[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE, 2018:6587-6592. [17] VAN HUFFEL S, VANDEWALLE J. The total least squares problem[M]. Philadelphia:Society for Industrial and Applied Mathematics, 1991. [18] SCHUERMANS M, MARKOVSKY I, WENTZELL P D, et al. On the equivalence between total least squares and maximum likelihood PCA[J]. Analytica Chimica Acta, 2005, 544(1-2):254-267. [19] HALE L E. Aerodynamic uncertainty quantification and estimation of uncertainty quantified performance of unmanned aircraft using non-deterministic simulations[D]. Blacksburg:Virginia Tech, 2017:37-49. [20] BRUNE A J, WEST T K IV, HOSDER S IV. Uncertainty quantification of planetary entry technologies[J]. Progress in Aerospace Sciences, 2019, 111:100574. [21] MORELLI E, WARD D. Automated simulation updates based on flight data[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2007. |