[1] ZHANG T, XU K, YAO Z X, et al The progress of extraterrestrial regolith-sampling robots[J]. Nature Astronomy, 2019, 3(6):487-497. [2] GAO Y, CHIEN S. Review on space robotics:toward top-level science through space exploration[J]. Science Robotics, 2017, 2:5074. [3] STIEBER M, TRUDEL C, HUNTER D. Robotic systems for the international space station[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 1997:3068-3073. [4] JORGENSEN G, BAINS E. SRMS history, evolution and lessons learned[C]//AIAA Space 2011 Conference and Exposition, 2011. [5] SCOTT M A, GILBERT M G, DEMEO M E. Active vibration damping of the space shuttle remote manipulator system[J]. Journal of Guidance, Control and Dynamics, 1993, 16(2):275-280. [6] LANDZETTEL K, BRUNNER B, SCHREIBER G, et al. MSS ground control demo with MARCO[C]//Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001. [7] STIEBER M E, HUNTER D G, ABRAMOVICI A. Overview of the mobile servicing system for the international space station[C]//Proceedings of the Fifth International Symposium on Artificial Intelligence, Robotics and Automation in space, 1999:37-42. [8] MCGREGOR R, OSHINOWO L. Flight 6A:deployment and checkout of the space station remote manipulator system (SSRMS)[C]//Proceedings of the 6th International Symposium on Artificial Intelligence,Robotics and Automation in Space (i-SAIRAS), 2001. [9] PIEDBOEUF J C,DE C J,AGHILI F, et al. Task verification facility for the Canadian special purpose dextrous manipulator[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1999, 2:1077-1083. [10] COLESHILL E, OSHINOWO L, REMBALA R, et al. Dextre:Improving maintenance operations on the international space station[J]. Acta Astronautica, 2009,64(9):869-874. [11] GREGORY T, NEWMAN M. Thermal design considerations of the Robotic Refueling Mission (RRM)[C]//Proceedings of the 41 st International Conference on Environmental Systems. Reston:AIAA, 2011. [12] MATSUEDA T, KURAOKA K, GOMA K, et al. JEMRMS system design and development status[C]//Proceedings of IEEE Telesystems Conference NTC'91, 1991, 1:391-395. [13] PATTEN L, EVANS L, OSHINOWO L, et al. International Space Station robotics:a comparative study of ERA,JEMRMS and MSS[C]//Proceedings of the 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation ‘ASTRA 2002’ ESTEC, 2002:1-8. [14] NAOKI S, YASUFUMI W. JEMRMS design features and topics from testing[C]//Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space (i-SAIRAS), 2001. [15] PREUSCHE C, REINTSEMA D, LANDZETTEL K, et al. Robotics component verification on ISS ROKVISS-Preliminary results for telepresence[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems, 2005:4595-4601. [16] DIFTLER M A, MEHLING J S, ABDALLAH M E, et al. Robonaut 2-the first humanoid robot in space[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 2010:2178-2183. [17] AHLSTROM T, CURTIS A, DIFTLER M, et al. Robonaut 2 on the International Space Station:status update and preparations for IVA mobility[C]//AIAA SPACE 2013 Conference and Exposition. Reston:AIAA, 2013:1-14. [18] 中国日报网. 日本小型机器人"KIROBO"在太空发出第一声[EB/OL](2013-09-05)[2020-03-10]. http://www.chinadaily.com.cn/hqzx/2013-09/05/content_16946748.htm. China Daily. Japanese small robot KIROBO makes the first sound in space[EB/OL] (2013-09-05)[2020-03-10]. http://www.chinadaily.com.cn/hqzx/2013-09/05/content_16946748.htm. [19] SPACE.COM. Meet Skybot F-850, the Humanoid Robot Russia is launching into space. (2019-08-02)[2020-02-28].https://www.space.com/russia-launching-humanoid-robot-into-space.html [20] 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学, 2018, 48(12):1313-1320. LIU H, LI Z Q, LIU Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. Scientia Sinica Techologica, 2018, 48(12):1313-1320(in Chinese). [21] 李大明, 饶炜, 胡成威, 等. 空间站机械臂关键技术研究[J]. 载人航天, 2014, 20(3):238-242. LI D M, RAO W, HU C W, et al. Key technology review of the research on the space station manipulator[J]. Manned Spaceflight, 2014, 20(3):238-242(in Chinese). [22] 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述[J]. 载人航天, 2015, 21(5):435-443. LIU H, JIANG Z N, LIU Y C. Review of space manipulator technology[J]. Manned Spaceflight, 2015, 21(5):435-443(in Chinese). [23] HIRZINGER G, BRUNNER B, DIETRICH J, et al. Sensor-based space robotics-ROTEX and its telerobotic features[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5):649-663. [24] HIRZINGER G, BRUNNER B, DIETRICH J, et al. ROTEX-the first remotely controlled robot in space[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1994:2604-2611. [25] KIMURA S, OKYUAMA T. Robot-aided remote inspection experiment on STS-85[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1290-1297. [26] YOSHIDA K. Achievements in space robotics[J]. IEEE Robotics & Automation Magazine, 2009, 16(4):20-28. [27] ODA M, KIBE K, YAMAGATA F. ETS-VⅡ, Space robot in-orbit experiment satellite[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1996:739-744. [28] OHKAMI Y, ODA M. NASDA's activities in space robotics[C]//Proceedings of Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999:11-18. [29] OGILVIE A, ALLPORT J, HANNAH M, et al. Autonomous robotic operations for on-orbit satellite servicing[C]//Proceedings of SPIE, 2008, 6958:695809. [30] 中国运载火箭技术研究院. 空间机械臂原理样机[EB/OL]. (2017-08-18)[2020-02-28]. http://www.calt.com/n484/n517/n608/c9360/content.html. China Academy of Launch Vehicle Technology. Prototype of space manipulator[EB/OL]. (2017-08-18)[2020-02-28]. http://www.calt.com/n484/n517/n608/c9360/content.html [31] SEENI A, SCHÄFER B, HIRZINGER G. Robot mobility systems for planetary surface exploration-state-of-the-art and future outlook:a literature survey[M]. 2010:189-208. [32] WILLIAMSON M. Man on the moon lunar exploration[J]. Engineering Science and Education Journal, 2002, 12:217-226. [33] 张玉花, 肖杰, 张晓伟, 等. 嫦娥三号巡视器移动设计与实现[J]. 中国科学:技术科学, 2014, 44(5):483-491. ZHANG Y H, XIAO J, ZHANG X W, et al. Design and implementation of Chang'E-3 rover location system[J]. Scientia Sinica Technologica, 2014, 44(5):483-491. (in Chinese) [34] 贾阳, 张建利, 李群智, 等. 嫦娥三号巡视器遥操作系统设计与实现[J]. 中国科学:技术科学, 2014, 44(5):470-482 JIA Y, ZHANG J L, LI Q Z, et al. Design and realization for teleoperation system of the Chang'E-3 rover[J]. Scientia Sinica Technologica, 2014, 44(5):470-482(in Chinese). [35] LINDEMANN R A, BICKLER D B, HARRINGTON B D, et al. Mars exploration rover mobility development[J]. IEEE Robotics & Automation Magazine, 2006, 13(2):19-26. [36] LINDEMANN R A, VOORHEES C J. Mars Exploration Rover mobility assembly design, test and performance[C]//Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 2005, 1:450-455. [37] STELTZNER A, KIPP D, CHEN A, et al. Mars Science Laboratory entry, descent, and landing system[C]//IEEE Aerospace Conference, 2006. [38] JANDURA L, BURKE K, KENNEDY B, et al. An overview of the Mars science laboratory sample acquisition, sample processing, and handling subsystem[C]//12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments, 2010:941-948. [39] ROBINSON M, COLLINS C, LEGER P, et al. Test and validation of the Mars science laboratory robotic arm[C]//IEEE International Conference on System of Systems Engineering, 2013:184-189. [40] ANDERSON R C, JANDURA L, OKON A B, et al. Collecting samples in Gale crater, Mars; an overview of the Mars science laboratory sample acquisition, sample processing and handling system[J]. Space Science Reviews, 2012, 170(1-4):57-75. [41] JANDURA L. Mars science laboratory sample acquisition, sample processing, and handling:subsystem design and test challenges[C]//Proceedings of the 40th Aerospace Mechanisms Symposium, 2010:233-248. [42] LAKDAWALLA E. The design and engineering of curiosity-how the mars rover performs its job[M]. Berlin:Springer Berlin Heidelberg, 2018:162-177. [43] BONITZ R, SHIRAISHI L, ROBINSON M, et al. The Phoenix Mars lander robotic arm[C]//Proceedings of the IEEE Aerospace Conference, 2009:1-12. [44] ARVIDSON R E, BONITZ R G, ROBINSON M L, et al. Results from the Mars Phoenix Lander Robotic Arm experiment[J]. Journal of Geophysical Research Atmospheres, 2009, 114(10):357-369. [45] TREBI-OLLENNU A, KIM W, ALI K, et al. InSight Mars lander robotics instrument deployment system[J]. Space Science Reviews, 2018, 214(5):93. [46] KRAUSE C, FANTINATI C, SMREKAR S, et al. HP3-Experiment on InSight mission-operations on Mars[C]//Proceedings of the 2018 SpaceOps Conference. Marseille, 2018. [47] DIDOT F, SCHOONEJANS P, SCOTT R. Eurobot underwater model testing the co-operation between human & robot[C]//Proceedings of the 9th ESA Workshop on Advance Space Technologies for Robotics and Automation ‘ASTRA 2006’, 2006. [48] BOSSE A B, BARNDS W J, BROWN M A, et al. SUMO:Spacecraft for the universal modification of orbits[C]//Proceedings of the SPIE, 2004,5419:36-46. [49] KELM B E, ANGIELSKI J A, BUTCHER S T, et al. FREND:Pushing the envelope of space robotics[R]. Washington,D.C.:Naval Research Lab, 2008:239-241. [50] 闫海江, 范庆玲, 康志宇, 等. DARPA地球静止轨道机器人项目综述[J]. 机器人, 2016(38):640. YAN H J, FAN Q L, KANG Z Y, et al. Review of DARPA's Geostationary Earth Orbit Robotic Programs[J]. Robot, 2016(38):640(in Chinese). [51] PALJUG E, OHM T, HAYATI S. The JPL serpentine robot:a 12-DOF system for inspection[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1995:3143-3148. [52] KIMURA S, YAMAMOTO H, NAGAI Y, et al. On-orbit performance demonstration of terrestrial processor for orbital maintenance system on the Micro-LabSat[C]//Proceedings of IEEE Aerospace Conference, 2004:193-201. [53] 耿仕能, 王友渔, 陈丽莎, 等. 变刚度连续型机械臂设计与控制[J]. 宇航学报, 2018, 39(12):81-90. GENG S N, WANG Y Y, CHEN L C, et al. Design and control of a continuum arm with variable stiffness[J]. Journal of Astronautics, 2018, 39(12):81-90(in Chinese). [54] AGHILI F, PARSA K. Design of a reconfigurable space robot with lockable telescopic joints[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006:4608-4614. [55] 王康, 梁常春, 林云成, 等. 基于可伸缩机构的空间机械臂系统设计[J]. 载人航天, 2016, 22(5):537-543. WANG K, LIANG C C, LIN Y C, et al. Design of reconfigurable space manipulator system[J]. Manned Spaceflight, 2016, 22(5):537-543(in Chinese). [56] AKIN D L, ROBERT B, RODERICK S, et al. MORPHbots:lightweight modular self-reconfigurable robotics for space assembly, inspection, and servicing[C]//Space 2006. Reston:AIAA, 2006:7408. [57] YIM M, SHEN W M, SALEMI B, et al. Modular self-reconfigurable robot systems-grand challenges of robotics[J]. IEEE Robotics & Automation Magazine, 2007, 14(1):43-52. [58] ZHANG Y, XU W F, WANG Z, et al. Dynamic modeling of self-reconfigurable multi-arm space robotic system with variable topology[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013:599-604. [59] 戴振东, 彭福军. 空间机器人的研究与仿壁虎机器人关键技术[J]. 科学通报, 2015, 60(32):3114-3124 DAI Z D, PENG F J. Research progress of space robots and key technologies of gecko-inspired robots[J]. Chinese Science Bulletin, 2015, 60(32):3114-3124(in Chinese). [60] 王思远, 唐玲, 王耀兵, 等. 一种腿臂融合四足机器人设计与分析[J]. 北京航空航天大学学报, 2017, 43(10):2099-2108. WANG S Y, TANG L, WANG Y B, et al. Design and analysis of an integrated leg-arm quadruped robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10):2099-2108(in Chinese). [61] ALBU-SCHÄFFER A, HADDADIN S, OTT C, et al. The DLR lightweight robot:design and control concepts for robots in human environments[J]. Industrial Robot, 2007, 34(5):376-385. [62] TSAGARAKIS N G, LAFFRANCHI M, VANDERBORGHT B, et al. A compact soft actuator unit for small scale human friendly robots[C]//IEEE International Conference on Robotics and Automation, 2009:4356-4362. [63] WOLF S, EIBERGER O, HIRZINGER G. The DLR FSJ:energy based design of a variable stiffness joint[C]//Proceedings of the IEEE International Conference on Robotics & Automation, 2011:5082-5089. [64] GREBENSTEIN M, ALBU-SCHÄFFER A, BAHLS T, et al. The DLR hand arm system[C]//Proceedings of the IEEE International Conference on Robotics & Automation, 2011:3175-3182. [65] LIU H, TAN Y S, LIU Y W, et al. Development of Chinese large-scale space end-effector[J]. Journal of Central South University of Technology, 2011, 18(3):600-609. [66] ZHU Y Y, GAO X H, XIE Z W, et al. Development of a gripper for Chinese space robot[C]//Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, 2006:1465-1470. [67] NISHIDA S I, HIRABAYASHI H, YOSHIKAWA T. A new end-effector for on-orbit assembly of a large reflector[C]//Proceedings of IEEE 9th International Conference on Control, Automation, Robotics and Vision, ICARCV 2006, 2006. [68] MICHAUD S, DOMINGUEZ M, NGUYEN U, et al. EUROBOT end-effectors[C]//Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation ‘ASTRA 2004’ ESTEC, 2004. [69] BRIDGWATER L B, IHRKE C A, DIFTLER M A, et al. The Robonaut 2 hand-designed to do work with tools[C]//Proceedings of IEEE International Conference on Robotics & Automation, 2012:3425-3430. [70] BUTTERFASS J, GREBENSTEIN M, LIU H, et al. DLR-Hand Ⅱ:next generation of a Dextrous robot hand[C]//Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2001:109-114. [71] LIU H, MEUSEL P, SEITZ N, et al. The modular multisensory DLR-HIT-Hand[J]. Mechanism Machine Theory, 2007, 42:612-625. [72] LIU H, WU K, MEUSEL P, et al. Multisensory five-finger dexterous hand:The DLR/HIT Hand Ⅱ[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008:3692-3697. [73] WILCOX B H, LITWIN T, BIESIADECKI J, et al. ATHLETE:A cargo handling and manipulation robot for the moon[J]. Journal of Field Robotics, 2007, 24(5):421-434. [74] 韩亮亮, 陈萌, 张崇峰, 等.月面服务机器人研究进展及发展设想[J]. 载人航天,2018,24(3):313-320. HAN L L, CHEN M, ZHANG C F, et al. Research progress and development conception of lunar service robot[J]. Manned Spaceflight, 2018, 24(3):313-320(in Chinese). [75] CORDES F, ROEHR T M, KIRCHNER F. RIMRES:a modular reconfigurable heterogeneous multi-robot exploration system[C]//The International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2012:1-7. [76] FONDAHL K, KUEHN D, BEINERSDORF F, et al. An adaptive sensor foot for a bipedal and quadrupedal robot[C]//The Fourth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2012:270-275. [77] MANZ M, BARTSCH S, KIRCHNER F. MANTIS-A robot with advanced locomotion and manipulation abilities[C]//Proceedings of the 12th Symposium on Advanced Space Technologies in Robotics and Automation, 2013:1-7. [78] CURTIS S, BRAND M, BOWERS G, et al. Tetrahedral robotics for space exploration[J]. IEEE Aerospace & Electronic Systems Magazine, 2007, 22(6):22-30. [79] NESNAS I, BURDICK J W. Axel rovers for exploring extreme planetary terrains[C]//Proceedings of IEEE International Conference on Robotics and Automation, 2013. [80] WAKABAYASHI S, SATO H, NISHIDA S I. Design and mobility evaluation of tracked lunar vehicle[J]. Journal of Terramechanics, 2009, 46(3):105-114. [81] KOZMA R, HUNSTBERGER T, AGHAZARIAN H, et al. Implementing intentional robotics principles using SSR2K platform[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:2262-2267. [82] WHEELER D, CHÁVEZ-CLEMENTE D, SUNSPIRAL V. FootSpring:A compliance model for the ATHLETE family of robots:NASA ARC-E-DAA-TN1788[R]. Washington,D.C.:NASA,2010. [83] MOTAHARI-BIDGOLI S M, MAHJOOB M J, DAVARIA S. Simulation and analysis of a TET-walker robot motion[C]//Proceedings of the 2nd RSI/ISM International Conference on Robotics and Mechatronics, 2014:914-919. [84] BARES J E, WETTERGREEN D S. Dante Ⅱ:technical description, results, and lessons learned[J]. The International Journal of Robotics Research, 1999, 18(7):621-649. [85] 陈建新, 邢琰, 滕宝毅, 等. 嫦娥三号巡视器GNC及地面试验技术[J]. 中国科学:技术科学, 2014, 44(5):461-469. CHEN J X, XING Y, TENG B Y, et al. Guidance, navigation and control technologies of Chang'E-3 lunar rover[J]. Scientia Sinica Technologica, 2014, 44(5):461-469(in Chinese). [86] BRESINA J L, GOLDEN K, SMITH D E, et al. Increased flexibility and robustness of Mars Rovers[C]//Proceedings of the 5th international Symposium on Artificial Intelligence, Robotics and Automation in Space, 1999. [87] CASTANO R, JUDD M, ESTLIN T, et al. Current result from a rover science data analysis system[C]//2005 IEEE Aerospace Conference, 2005. [88] CASTANO R, ESTLIN T, JUDD M. Intensity-based rock detection for acquiring onboard rover science[C]//Lunar and Planetary Science Conference, 2004. [89] MAIMONE M W, JOHNSON A E, CHENG Y, et al. Autonomous navigation results from the Mars Exploration Rover (MER) mission[M]. Berlin:Springer, 2006:3-13. [90] BAKAMBU J N, LANGLEY C, MUKHERJI R. Visual motion estimation:Localization performance evaluation tool for planetary rovers[C]//International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), 2008. [91] CARSTEN J, RANKIN A, FERGUSON D, et al. Global planning on the Mars exploration rovers:software integration and surface testing[J]. Journal of Field Robotics, 2009, 26(4):337-357. [92] AL-HASAN S, VACHTSEVANOS G. Intelligent route planning for fast autonomous vehicles operating in a large natural terrain[J]. Robotics and Autonomous Systems, 2002, 40(1):1-24. [93] LIKHACHEV M, FERGUSON D, GORDON G, et al. Anytime dynamic A*:an anytime, replanning algorithm[C]//Proceedings of the International Conference on Automated Planning and Scheduling(ICAPS), 2005:262-271. [94] FERGUSON D, STENTZ A. Using interpolation to improve path planning:The field D* algorithm[J]. Journal of Field Robotics, 2006, 23(2):79-101. [95] 郝颖明, 付双飞, 范晓鹏, 等. 面向空间机械臂在轨服务操作的视觉感知技术[J]. 无人系统技术, 2018(1):54-65. HAO Y M, FU S F, FAN X P, et al. Vision perception technology for space manipulator on-orbit service operations[J]. Unmanned Systems Technology, 2018(1):54-65(in Chinese). [96] OBERMARK J, CREAMER G, KELM B E, et al. SUMO/FREND:vision system for autonomous satellite grapple[C]//Proceedings of SPIE, 2007. [97] ESTABLE S, TELAAR J, LANGE M. Definition of an automated vehicle with autonomous fail-safe reaction behavior to capture and deorbit envisat[C]//Proceedings of 7th European Conference on Space Debris, 2017. [98] ECKSTEIN W. NASA's R2 vision software controls a space-robot-spectronet[DB/OL]. http://spectronet.de/story_docs/vortraege_2010/101109_vision/1_MVTec.pdf. [99] 江左. 触须粘附式大尺寸非合作空间目标快速消旋方案设计与分析[D]. 哈尔滨:哈尔滨工业大学, 2017:27-35. JIANG Z. Research of quickly stop space junk rotating with gecko setae array of micro-nano project[D]. Harbin:Harbin Institute of Technology, 2017:27-35(in Chinese). [100] 丁希仑. 拟人双臂机器人技术[M]. 北京:科学出版社, 2011:184-189. DING X L. Humanoid dual arm robot technology[M]. Beijing:Science Press, 2011:184-189(in Chinese). [101] 刘嘉宇, 李通通, 余张国, 等. 多臂空间机器人操作大型目标的全身接触柔顺控制研究[J]. 兵工学报, 2019, 40(2):174-182. LIU J Y, LI T T, YU Z G, et al. On whole-body contact compliance control for spatial multi-arm robot manipulating a large target[J]. Acta Armamentarii, 2019, 40(2):174-182(in Chinese). [102] ALBU-SCHAFFER A, OTT C, HIRZINGER G. A unified passivity-based control framework for position, torque and, impedance control of flexible joint robots[J]. The International Journal of Robotics Research, 2007, 26(1):23-39. [103] OTT C, ALBU-SCHÄFFER A, KUGI A, et al. A passivity based cartesian impedance controller for flexible joint robots part i:torque feedback and gravity compensation[C]//IEEE International Conference on Robotics and Automation ICRA, 2004:2659-2665. [104] PLATT R, ABDALLAH M E, WAMPLER C. Multiple-priority impedance control[C]//IEEE International Conference on Robotics and Automation ICRA, 2011:6033-6038. [105] XU Y S, SHUM H Y, KANADE T, et al. Parameterization and adaptive control of space robot systems[J]. IEEE Transactions on Aerospace & Electronic Systems, 1994, 30(2):435-451. [106] CHU Z Y, SUN F C, CUI J. Disturbance observer-based robust control of free-floating space manipulators[J]. IEEE Systems Journal, 2008, 2(1):114-119. [107] BUSONIU L, SCHUTTER B D, BABUSKA R. Decentralized reinforcement learning control of a robotic manipulator[C]//International Conference on Control, Automation, Robotics and Vision, 2007:16. [108] ODA M, OHKAMI Y. Coordinated control of spacecraft attitude and space manipulators[J]. Control Engineering Practice, 1997, 5:11-21. [109] 徐文福, 孟得山,徐超,等. 自由漂浮空间机器人捕获目标的协调控制[J]. 机器人, 2013, 35(5):559-567 XU W F, MENG D S, XU C, et al. Coordinated control of a free-floating space robot for capturing a target[J]. Robot, 2013, 35(5):559-567(in Chinese). [110] YOSHIKAWA S, YAMADA K. Angular momentum control of tumbling spacecraft by repetitive impluses[C]//ISAS Proceedings of 13th Workshop on Astrodynamics and Flight Mechanics, 2004:76-83. [111] DIMITAR D. Momentum distribution in a space manipulator for facilitating the post-impact control[C]//International Conference on Intelligent Robots and Systems, 2004:3345-3350. |