[1] 叶培建, 彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学, 2006, 8(10):13-18. YE P J, PENG J. Deep space exploration and its prospect in China[J]. Engineering Science, 2006, 8(10):13-18(in Chinese). [2] 吴伟仁, 于登云.深空探测发展与未来关键技术[J].深空探测学报, 2014, 1(1):5-17. WU W R, YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1):5-17(in Chinese). [3] 孙泽洲, 孟林智. 中国深空探测现状及持续发展趋势[J]. 南京航空航天大学学报, 2015, 47(6):785-791. SUN Z Z, MENG L Z. Current situation and sustainable development trend of deep space exploration in China[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(6):785-791(in Chinese). [4] 吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5):405-416. WU W R, LIU J Z, TANG Y H, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5):405-416(in Chinese). [5] 王巍, 梁斌, 强文义. 月球探测机器人及其关键技术浅析[J]. 哈尔滨工业大学学报, 2001, 33(3):321-325. WANG W, LIANG B, QIANG W Y. A general lunar roving robot and its critical technology[J]. Journal of Harbin Institute of Technology, 2001, 33(3):321-325(in Chinese). [6] 马超, 孙京, 刘宾, 等. 嫦娥探测器分段渐倾转移机构设计[J]. 航空学报, 2019, 40(10):223014. MA C, SUN J, LIU B, et at. Design of rover transfer mechanism for Chang'e probe[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):223014(in Chinese). [7] 欧阳自远, 肖福根. 火星探测的主要科学问题[J]. 航天器环境工程, 2011, 28(3):205-217. OUYANG Z Y, XIAO F G. Major scientific issues involved in Mars exploration[J]. Spacecraft Environment Engineering, 2011, 28(3):205-217(in Chinese). [8] 张荣桥, 黄江川, 郝荣伟, 等. 小行星探测发展综述[J]. 深空探测学报, 2019, 6(5):417-423. ZHANG R Q, HUANG J C, HAO R W, et al. The development overview of asteroid exploration[J]. Journal of Deep Space Exploration, 2019, 6(5):417-423(in Chinese). [9] 韩亮亮, 陈萌, 张崇峰, 等. 月面服务机器人研究进展及发展设想[J]. 载人航天, 2018, 24(3):313-320. HAN L L, CHEN M, ZHANG C F, et al. Research progress and development conception of lunar service robot[J]. Manned Spaceflight, 2018, 24(3):313-320(in Chinese). [10] WANG T M, TAO Y, LIU H. Current researches and future development trend of intelligent robot:A review[J]. International Journal of Automation & Computing, 2018, 15(9):1-22. [11] SAJAD S G, PAULL L, TRENTINI M, et al. Multiple-robot simultaneous localization and mapping:A review[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2011. [12] 丁希仑, 石旭尧, ROVETTA A, 等. 月球探测(车)机器人技术的发展与展望[J]. 机器人技术与应用, 2008(3):23-27. DING X L, SHI X Y, ROVETTA A, et al. Development and prospect of lunar exploration robots (rovers)[J]. Robot Technology and Application, 2008(3):23-27(in Chinese). [13] SASAKI S, KUBOTA T, OKADA T, et al. Scientific exploration of lunar surface using a rover in Japanese future lunar mission[J]. Advances in Space Research, 2002, 30(8):1921-1926. [14] KUBOTA T, KUNⅡ Y. Intelligent guidance of mobile explorer for planetary robotic exploration[C]//IEEE 2009 International Conference on Mechatronics. Piscataway:IEEE Press, 2009. [15] KUBOTA T, KURODA Y, KUNⅡ Y, et al. Lunar exploration rover:Micro5[J]. Advanced Robotics, 2000, 14(5):443-444. [16] KUBOTA T, KURODA Y, KUNⅡ Y, et al. Small, light-weight rover "Micro5" for lunar exploration[J]. Acta Astronautica, 2003, 52(2):447-453. [17] SAITOH T, SANPEI M, KURODA Y. Effective strategy for autonomous navigation without prior knowledge in fastslam[C]//IEEE Workshop on Robotic Intelligence in Informationally Structured Space. Piscataway:IEEE Press, 2009. [18] KUNⅡ Y, KURODA Y, KUBOTA T. Development of micro-manipulator for tele-science by lunar rover:Micro5[J]. Acta Astronautica, 2003, 52(2):433-439. [19] 欧阳自远, 肖福根. 火星及其环境[J]. 航天器环境工程, 2012, 29(6):591-601. OUYANG Z Y, XIAO F G. The Mars and its environment[J]. Spacecraft Environment Engineering, 2012, 29(6):591-601(in Chinese). [20] 赵鹏越, 全齐全, 邓宗全,等. 旋翼式火星无人机技术发展综述[J]. 宇航学报, 2018, 39(2):121-130. ZHAO P Y, QUAN Q Q, DENG Z Q, et al. Overview of research on rotary-wing Mars unmanned aerial vehicles[J]. Journal of Astronautics, 2018, 39(2):121-130(in Chinese). [21] 姚克明. 火星无人机控制与自主导航关键技术研究[D]. 南京:南京航空航天大学, 2011. YAO K M. Research on key technologies of Mars UAV control and autonomous navigation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese). [22] RHEW R, GUYNN M, YETTER J, et al. Planetary flight vehicles (PFV):Technology development plans for new robotic explorers[C]//Infotech Aerospace Conferences, 2005. [23] 姚克明, 王小兰, 刘燕斌, 等. 火星探测无人机任务规划与建模分析[J]. 空间科学学报, 2012, 32(1):8-13. YAO K M, WANG X L, LIU Y B, et al. Mission planning and modeling analysis for unmanned aerial exploration vehicle on Mars[J]. Chinese Journal of Space Science, 2012, 32(1):8-13(in Chinese). [24] ZHAO P Y, QUAN Q Q, CHEN S T, et al. Experimental investigation on hover performance of a single-rotor system for Mars helicopter[J]. Aerospace Science and Technology, 2019, 86:582-591. [25] SHRESTHA R, BENEDICT M, HRISHIKESHAVAN V, et al. Hover performance of a small-scale helicopter rotor for flying on Mars[J]. Journal of Aircraft, 2016, 53(4):1160-1167. [26] FORSHAW J L, LAPPS V J. Architecture and systems design of a reusable Martian twin rotor tailsitter[J]. Acta Astronautica, 2012, 80:166-180. [27] COLLINS N S. System design and nonlinear state-dependent Riccati equation control of an autonomous Y-4 tilt-rotor aerobot for Martian exploration[D]. Guildford:University of Surrey, 2016. [28] PATTON P. Helicopter Drones on Mars[EB/OL].(2015)[2020-01-15]. https://www.universetoday.com/1193-61/helicopter-drones-on-mars/. [29] ZAKRAJSEK J F, WOERNER D F, CAIRNSGALLIMORE D, et al. NASA's radioisotope power systems planning and potential future systems overview[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2016. [30] BURR D M, BRIDGES N T, MARSHALL J R, et al. Higher-than-predicted saltation threshold wind speeds on Titan[J]. Nature, 2014, 517(7532):60-63. [31] 赵静, 魏世民, 唐玲, 等. 火星车行驶环境研究综述[J]. 载人航天, 2019, 25(2):117-125. ZHAO J, WEI S M, TANG L, et al. Review on driving environment of Mars rover[J]. Manned Spaceflight, 2019, 25(2):117-125(in Chinese). [32] 徐青, 耿迅, 蓝朝桢, 等. 火星地形测绘研究综述[J]. 深空探测学报, 2014,1(1):36-43. XU Q, GENG X, LAN C Z, et al. Review of Mars topographic mapping[J]. Journal of Deep Space Exploration, 2014,1(1):36-43(in Chinese). [33] KARRAS J T, FULLER C L, CARPENTER K C, et al. Pop-up mars rover with textile-enhanced rigid-flex PCB body[C]//IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2017. [34] BAISCH A T, WOOD R J. Pop-up assembly of a quadrupedal ambulatory MicroRobot[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2013. [35] SUN X, FELTON S M, NⅡYAMA R, et al. Self-folding and self-actuating robots:A pneumatic approach[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2015. [36] RUSSO S, RANZANI T, GAFFORD J, et al. Soft pop-up mechanisms for micro surgical tools:Design and characterization of compliant millimeter-scale articulated structures[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2016. [37] SONSALLA R, AKPO J B, KIRCHNER F. Coyote Ⅲ:Development of a modular and highly mobile micro rover[C]//13th Symposium on Advanced Space Technologies in Robotics and Automation, 2015. [38] WOEHRLE H, KRELL M M, STRAUBE S, et al. An adaptive spatial filter for user-independent single trial detection of event-related potentials[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(7):1696-1705. [39] IMHOF B, HOHENEDER W, RANSOM S, et al. Moonwalk-human robot collaboration mission scenarios and simulations[C]//AIAA Space Conference and Exposition. Reston:AIAA, 2015. [40] PARRO V, PUENTE-SÁNCHEZ F, VÖGELE T, et al. The Moonwalk project:Preparing for human supported science on Mars and the moon[C]//Proceedings of Astrobiology Science Conference, 2015. [41] 朱恩涌, 孙国江, 果琳丽, 等. 我国小行星探测发展思路及关键技术探讨[J]. 航天器工程, 2012, 21(3):96-100. ZHU E Y, SUN G J, GUO L L, et al. Study on development idea of Chinese asteroid exploration and key technologies[J]. Spacecraft Engineering, 2012, 21(3):96-100(in Chinese). [42] 李春来, 刘建军, 严韦, 等. 小行星探测科学目标进展与展望[J]. 深空探测学报, 2019, 6(5):424-436. LI C L, LIU J J, YAN W, et al. Overview of scientific objectives for minor planets exploration[J]. Journal of Deep Space Exploration, 2019, 6(5):424-436(in Chinese). [43] 张韵, 李俊峰. 小行星的物理性质与结构演化研究进展[J]. 中国科学:物理学、力学、天文学, 2019, 49(8):3-17. ZHANG Y, LI J F. Physical properties and structural evolution of asteroids[J]. Scientia Sinica:Physica, Mechanica & Astronomica, 2019, 49(8):3-17(in Chinese). [44] 张韵, 李俊峰. 碎石堆小行星的散体动力学建模与仿真方法综述[J]. 力学学报, 2015, 47(1):1-7. ZHANG Y, LI J F. A survey of granular dynamics modeling and simulation methods for rubble-pile asteroids[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1):1-7(in Chinese). [45] KUBOTA T, YOSHIMITSU T. Intelligent unmanned explorer for deep space exploration[C]//Proceedings of the International Conference on Intelligent Unmanned System (ICIUS), 2007. [46] GRIMM C D, SCHRODER S, WITTE L, et al. Size matters-the shell lander concept for exploring medium-size airless bodies[C]//69th International Astronautical Congress (IAC), 2018. [47] MI H T, VOLODYMYR B, CHRISTIAN G, et al. MASCOT-The mobile asteroid surface scout onboard the Hayabusa2 mission[J]. Space Science Reviews, 2017, 208(1):339-374. [48] GRIMM C D, GRUNDMANN J T, HENDRIKSE J, et al. From idea to flight-A review of the mobile asteroid surface scout (MASCOT) development and a comparison to historical fast-paced space programs[J]. Progress in Aerospace Sciences, 2019, 104(6):20-39. [49] HOCKMAN B J, FRICK A, REID R G, et al. Design, control, and experimentation of internally-actuated rovers for the exploration of low-gravity planetary bodies[J]. Journal of Field Robotics, 2017, 34(1):5-24. [50] HOCKMAN B J, PAVONE M. Stochastic motion planning for hopping rovers on small solar system bodies[C]//The 18th International Symposium on Robotics Research (ISRR), 2017. [51] HOCKMAN B J, REID R G, NESNAS I A, et al. Experimental methods for mobility and surface operations of microgravity robots[C]//International Symposium on Experimental Robotics, 2016:752-763. [52] 李爽, 彭玉明, 陆宇平, 等. 火星EDL导航、制导与控制技术综述与展望[J]. 宇航学报, 2010, 31(3):621-627. LI S, PENG Y M, LU Y P. Review and prospect of Mars EDL navigation guidance and control technologies[J]. Journal of Astronautics, 2010, 31(3):621-627(in Chinese). [53] 张利格, 毕树生, 彭朝琴. 空间四面体翻滚机器人运动学分析及仿真实验[J]. 北京航空航天大学学报, 2011, 37(4):415-427. ZHANG L G, BI S S, PENG Z Q. Motion analysis and simulation of tetrahedral rolling robot[J]. Journal of Beijing University of Aeronautics & Astronautics, 2011, 37(4):415-427(in Chinese). [54] DU W J, MA S G, LI B. Force analytic method for rolling gaits of tensegrity robots[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2249-2259. [55] 李团结, 刘卫刚. 风力驱动球形机器人动力学[J]. 航空学报, 2010, 31(2):426-430. LI T J, LIU W G. Dynamics of the wind-driven spherical robot[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):426-430(in Chinese). [56] 李满天, 黄博, 刘国才, 等. 模块化可重构履带式微小型机器人的研究[J]. 机器人, 2006, 28(5):548-552. LI M T, HUANG B, LIU G C, et al. A modular reconfigurable tracked micro-robot[J]. Robot, 2006, 28(5):548-552(in Chinese). [57] 曹雯. 微小型轮腿式移动机器人的研究和设计[D]. 上海:上海交通大学, 2007. CAO W. A novel mobile small robots with combined wheels and legs[D]. Shanghai:Shanghai Jiao Tong University, 2007(in Chinese). [58] ZHAO J, LIU G E, YAN J H, et al. Scout robot with wheeling-hopping combination locomotion[J]. Industrial Robot, 2009, 36(3):244-248. [59] 周伟, 石为人, 李江波, 等. MSTRbot:一种小型侦查机器人[J]. 机器人, 2011, 33(5):592-598. ZHOU W, SHI W R, LI J B, et al. MSTRbot:A miniature robot for reconnaissance[J]. Robot, 2011, 33(5):592-598(in Chinese). [60] ZHU Y H, FEI Y Q, XU H W. Stability analysis of a wheel-track-leg hybrid mobile robot[J]. Journal of Intelligent & Robotic Systems, 2018, 91(3):515-528. |