航空学报 > 2019, Vol. 40 Issue (9): 222938-222938   doi: 10.7527/S1000-6893.2019.22938

基于结构声强法的机匣振动能量传递特性

马英群1,2, 徐蒙1,2, 张锴1, 赵巍1,2, 赵庆军1,2,3   

  1. 1. 中国科学院 工程热物理研究所, 北京 100190;
    2. 中国科学院大学 航空宇航学院, 北京 100049;
    3. 中国科学院 轻型动力重点实验室, 北京 100190
  • 收稿日期:2019-01-25 修回日期:2019-03-01 出版日期:2019-09-15 发布日期:2019-05-07
  • 通讯作者: 赵庆军 E-mail:zhaoqingjun@iet.cn
  • 基金资助:
    国家重点研发计划(2016YFB0901402);国家自然科学基金(51776198)

Vibration energy transmission characteristics of casing based on structural intensity method

MA Yingqun1,2, XU Meng1,2, ZHANG Kai1, ZHAO Wei1,2, ZHAO Qingjun1,2,3   

  1. 1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Key Laboratory of Light-duty Gas-turbine, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2019-01-25 Revised:2019-03-01 Online:2019-09-15 Published:2019-05-07
  • Supported by:
    National Key Technology Research and Development Program of China (2016YFB0901402); National Natural Science Foundation of China (51776198)

摘要: 为了分析在转子不平衡力激励作用下机匣上纵波、剪切波、扭转波以及弯曲波所携带的瞬态与稳态振动能量的分布规律和传递特性,将结构声强法拓展成矩阵的形式应用到航空发动机领域。建立了转子不平衡力作用下的双转子-支承-机匣耦合模型,通过由有限元工具和自编译程序组建的计算系统,求解并可视化了在高低压转子不平衡力激励作用下机匣瞬态与稳态的总结构声强场以及不同类型振动波的结构声强场。此外,通过运动方程推导并分析了结构声强与结构振动特性之间的内在物理关系。结果表明,机匣上纵波振动能量穿过法兰边后沿其周向传递,而剪切波和扭转波所携带的振动能量则可以穿过法兰边沿机匣轴向传递;支板上的振动能量首先以弯曲波的形式传递到机匣上,振动能量在机匣上沿主要路径传递过程中会发生不同类型振动波相互转换的现象;结构声强通过结构的动能变化率、应变能变化率以及阻尼耗散等能量参数与结构振动特性产生内在物理联系,对结构振动的控制本质上就是对振动能量流的控制。研究结论可为航空发动机机匣以及整机减振提供一定理论指导。

关键词: 机匣, 结构声强法, 振动波, 振动能量, 传递特性, 整机减振

Abstract: To analyze the distribution rules and transmission characteristics of instantaneous and steady vibration energy carried by longitudinal wave, shear wave, twist wave, and flexural wave on the casing subjected to the rotor unbalanced forces, the structural intensity method is extended into a matrix form and applied to the field of aero-engines. The dual rotor-support-casing coupling model subjected to the rotor unbalanced forces is established. The calculation system consisting of the finite element tool and the in-house program is used to compute and visualize the instantaneous and steady structural intensity fields of the casing for these different types of vibration waves. Moreover, the relationship between the structural intensity and the general vibration characteristics is derived and analyzed from the basic motion equation. The results show that the longitudinal wave vibration energy of the casing passes through the flange and then transmits along the circumferential direction, and the vibration energy carried by the shear wave and the twist wave can be transmitted through the flange and then transmits along the axial direction on the casing. Second, the vibration energy of the support is first transmitted to the casing in the form of the bending wave, and the vibration energy is converted into different types of vibration waves during the transmission along the main path on the casing. Third, the structural intensity generates an intrinsic physical connection between the structure vibration characteristics by the energy parameters such as the kinetic energy change rate, the strain energy change rate, and the damping dissipation. The control of the structure vibration is essentially the control of the vibrational energy flow. The conclusions can provide some guiding significance for the vibration attenuation of the casing and the whole aero-engine.

Key words: casing, structural intensity method, vibration wave, vibration energy, transmission characteristic, whole aero-engine vibration attenuation

中图分类号: