[1] PARSHANI R, BULDYREV S, HAVLIN S. Interdependent networks:Reducing the coupling strength leads to a change from a first to second order percolation transition[J]. Physical Review Letters, 2010, 105(4):048701. [2] BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291):1025-1028. [3] DANZIGER M M, SHEKHTMAN L M, BASHAN A, et al. Vulnerability of interdependent networks and networks of networks[J]. Berlin:Springer International Publishing, 2016:75-93. [4] FU G, DAWSON R, KHOURY M, et al. Interdependent networks:Vulnerability analysis and strategies to limit cascading failure[J]. European Physical Journal B, 2014, 87(7):1-10. [5] LAPRIE J C, KANOUN K, KANICHE M. Modelling interdependencies between the electricity and information infrastructures[C]//International Conference on Computer Safety, 2007:54-67. [6] BERNSTEIN A, BIENSTOCK D, HAY D, et al. Power grid vulnerability to geographically correlated failures-Analysis and control implications[C]//IEEE INFOCOM, 2014, 22(4):2634-2642. [7] OUYANG M. Review on modeling and simulation of interdependent critical infrastructure systems[J]. Reliability Engineering & System Safety, 2014, 121(1):43-60. [8] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(S1):112-118. WU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):112-118(in Chinese). [9] 徐肖豪, 李善梅. 空中交通拥挤的识别与预测方法研究[J]. 航空学报, 2015, 36(8):2753-2763. XU X H, LI S M. Identification and prediction of air traffic congestion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2753-2763(in Chinese). [10] WANG H Y, XU X H, ZHAO Y F. Empirical analysis of aircraft clusters in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2017, 231(9):1718-1731. [11] WANG H Y, SONG Z Q, WEN R Y, et al. Study on evolution characteristics of air traffic situation complexity based on complex network theory[J]. Aerospace Science & Technology, 2016, 58:518-528. [12] BELKOURA S, COOK A, PEÑA J M, et al. On the multi-dimensionality and sampling of air transport networks[J]. Transportation Research Part E, 2016, 94:95-109. [13] LI B J, DU W B, LIU C, et al. Topologic and dynamic resilience model of Chinese airport network[C]//IEEE International Conference on Control & Automation. Piscataway, NJ:IEEE Press, 2014:1460-1465. [14] DU W B, LIANG B Y, YAN G, et al. Identifying vital edges in Chinese air route network via memetic algorithm[J]. Chinese Journal of Aeronautics, 2017, 30(1):330-336. [15] CONG W, HU M H, DONG B, et al. Empirical analysis of airport network and critical airports[J]. Chinese Journal of Aeronautics, 2016, 29(2):512-519. [16] WANG S J, CAO X, LI H Y, et al. Air route network optimization in fragmented airspace based on cellular automata[J]. Chinese Journal of Aeronautics, 2017, 30(3):1184-1195. [17] GURTNER G, VITALI S, CIPOLLA M, et al. Multi-scale analysis of the european airspace using network community detection[J]. Plos One, 2014, 9(5):e94414. [18] LORDAN O, SALLAN J M. Analyzing the multilevel structure of the European airport network[J]. Chinese Journal of Aeronautics, 2017, 30(2):554-560. [19] DU W B, ZHOU X L, LORDAN O, et al. Analysis of the Chinese airline network as multi-layer networks[J]. Transportation Research Part E Logistics & Transportation Review, 2016, 89:108-116. [20] HONG C, LIANG B Y. Analysis of the weighted Chinese air transportation multilayer network[C]//Intelligent Control & Automation, 2016:2318-2321. [21] HONG C, ZHANG J, CAO X B, et al. Structural properties of the Chinese air transportation multilayer network[J]. Chaos, Solitons & Fractals, 2016, 86:28-34. [22] JIANG J, HAN J H, ZHANG R, et al. The transition point of the Chinese multilayer air transportation networks[J]. International Journal of Modern Physics B, 2017, 31(26):1750186. [23] VOLTES-DORTA A, RODRÍGUEZ-DÉNIZ H, SUAU-SANCHEZ P. Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays:Ranking the most critical airports[J]. Transportation Research Part A Policy & Practice, 2017, 96:119-145. [24] HAN S C, LI P. Vulnerability assessment of navigation station equipment network based on complex network theory[C]//Conference of the IEEE Industrial Electronics Society. Piscataway, NJ:IEEE Press, 2017:6940-6945. [25] WILKINSON S M, DUNN S, MA S. The vulnerability of the European air traffic network to spatial hazards[J]. Natural Hazards, 2012, 60(3):1027-1036. [26] 方锦清. 从单一网络向《网络的网络》的转变进程-略论多层次超网络模型的探索与挑战[J]. 复杂系统与复杂性科学, 2016, 13(1):40-47. FANG J Q. From a single network to "Network of Networks" development process:some discussions on the exploration of multilayer supernetwork models and challenges[J]. Complex Systems and Complexity Science, 2016, 13(1):40-47(in Chinese). [27] 中华人民共和国交通运输部令. 民用航空空中交通管理规则:CCAR-93-R5[S]. 北京:中华人民共和国交通运输部, 2017:132-168. Order of the Ministry of Transport of the People's Republic of China. Civil aviation air traffic management rules:CCAR-93-R5[S]. Beijing:Ministry of Transport of the People's of China, 2017:132-168(in Chinese). [28] 金鸿章, 韦琦, 郭健, 等. 复杂系统的脆性理论及应用[M]. 西安:西北工业大学出版社, 2010:184-195. JIN H Z, WEI Q, GUO J, et al. The theory and application of brittleness in complex systems[M]. Xi'an:Northwestern Polytechnical University Press, 2010:184-195(in Chinese). |