[1] BOLADO-LAVIN R, CASTAINGS W, TARANTOLA S. Contribution to the sample mean plot for graphical and numerical sensitivity analysis[J]. Reliability Engineering and System Safety, 2009, 94:1041-1049. [2] TARANTOLA S, KOPUSTINSKAS V, BOLADO-LAVIN R, et al. Sensitivity analysis using contribution to sample variance plot:Application to a water hammer model[J]. Reliability Engineering and System Safety, 2012, 99:62-73. [3] WEI P F, LU Z Z, RUAN W B, et al. Regional sensitivity analysis using revised mean and variance ratio functions[J]. Reliability Engineering and System Safety, 2014, 121:121-135. [4] 冯凯旋, 吕震宙, 蒋献. 基于偏导数的全局灵敏度指标的高效求解方法[J]. 航空学报, 2018, 39(3):221699. FENG K X, LYU Z Z, JIANG X. Efficient algorithm for estimating derivative-based global sensitivity index.[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):221699(in Chinese). [5] BORGONOVO E, PLISCHKE E. Sensitivity analysis:A review of recent advances[J]. European Journal of Operational Research, 2016, 3(1):869-887. [6] SALTELLI A, MARIVOET J. Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques[J]. Reliability Engineering and System Safety, 1900, 28(2):229-253. [7] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2011, 55:271-280. [8] SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output:Design and estimator for the total sensitivity index[J]. Computation Physics Communication, 2010, 181(2):259-270. [9] 巩祥瑞, 吕震宙, 左键巍. 两种基于方差的全局灵敏度分析W指标改进算法[J]. 航空学报, 2016, 37(6):1888-1898. GONG X R, LYU Z Z, ZUO J W. Two importance methods for variance-based global sensitivity analysis' W-indices[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1888-1898(in Chinese). [10] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering and System Safety, 2007, 92(6):771-784. [11] CUI L J, LU Z Z, ZHAO X P. Moment-independent importance measure of basic random variable and its probability density evolution solution[J]. Science China Technological Sciences, 2010, 53(4):1138-1145. [12] LI L Y, LU Z Z, FENG J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution[J]. Structural Safety, 2012, 38:40-47. [13] YUN W Y, LU Z Z, ZHANG K C, et al. An efficient sampling method for variance-based sensitivity analysis[J]. Structural Safety, 2017, 65:74-83. [14] YUN W Y, LU Z Z, JIANG X. An efficient sampling approach for variance-based on the law of total variance in the successive intervals without overlapping[J]. Mechanical Systems and Signal Processing, 2018, 106:495-510. [15] 员婉莹, 吕震宙, 蒋献, 等. 可靠性全局灵敏度指标的空间分割高效方法[J]. 北京航空航天大学学报, 2017, 43(6):1199-1207. YUAN W Y, LYU Z Z, JIANG X, et al. An efficient method for reliability global sensitivity index by space partition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6):1199-1207(in Chinese). [16] ZHANG X F, PANDEY M D. An effective approximation for variance-based global sensitivity analysis[J]. Reliability Engineering System Safety, 2014, 121:164-174. [17] 张磊刚, 吕震宙, 陈军. 基于失效概率的矩独立重要性测度的高效算法[J]. 航空学报, 2014, 35(8):2199-2206. ZHANG L G, LYU Z Z, CHENG J. An efficient method for failure probability-based moment-independent importance measure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2199-2206(in Chinese). [18] SUDRET B. Global sensitivity analysis using polynomial chaos expansion[J]. Reliability Engineering & System Safety, 2008, 93:964-979. [19] SHAN S, YOUNES A, MARWAN F, et al. Bayesian sparse polynomial chaos expansion for global sensitivity analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 318:474-496. [20] WU Z P, WANG D H, OKOLO N P, et al. Global sensitivity analysis using a Gaussian radial basis function metamodel[J]. Reliability Engineering and System Safety, 2016, 154:171-179. [21] WEI P F, LU Z Z, HAO W R, et al. Efficient sampling methods for global reliability sensitivity analysis[J]. Computation Physics Communication, 2012, 183(8):1728-1743. [22] YUN W Y, LU Z Z, JIANG X, et al. An efficient method for estimating global sensitivity indices[J]. International Journal for Numerical Methods in Engineering, 2016, 108:1275-1289. [23] NOH Y G, CHOI K K, DU L. Reliability-based design optimization of problems with correlated input variables using a Gaussian copula[J]. Structural and Multidisciplinary Optimization, 2009, 38:1-16. [24] ASSAF S A, ZIRKLE L D. Approximate analysis of non-linear stochastic systems[J]. International Journal of Control, 1976, 23(4):477-492. |