[1] Dukeman G A. Profile-following entry guidance using linear quadratic regulator theory[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002.
[2] Shen Z, Lu P. Dynamics lateral entry guidance logic[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 949-959.
[3] Xue S, Lu P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1273-1281.
[4] Lu P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1067-1075.
[5] Leavitt J A, Saraf A, Chen D T, et al. Performance of evolved acceleration guidance logic for entry (EAGLE)[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002.
[6] Saraf A, Leavitt J A, Chen D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6): 986-996.
[7] Schierman J D, Hull J R. In-flight entry trajectory optimization for reusable launch vehicles[C]//Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2005: 1256-1262.
[8] Tian B, Zong Q. Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method[J]. Acta Astronautica, 2011, 68(7): 1176-1184.
[9] Yong E M, Tang G J, Chen L. Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudospectral method[J]. Journal of Astronautics, 2008, 29(6): 1766-1772 (in Chinese). 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772.
[10] Liu P, Zhao J S, Gu L X. Rapid approach for three-dimensional trajectory optimization of hypersonic reentry vehicles[J]. Flight Dynamics, 2012, 30(3): 263-267 (in Chinese). 刘鹏, 赵吉松, 谷良贤. 三维高超声速飞行器再入轨迹快速优化[J]. 飞行力学, 2012, 30(3): 263-267.
[11] Xie Y F, Tang S. On-line trajectory reshaping of suborbital return entry via pseudospectral method[J]. Flight Dynamics, 2011, 29(6): 63-67 (in Chinese). 解永锋, 唐硕. 基于伪谱法的亚轨道返回轨迹在线重构方法[J].飞行力学, 2011, 29(6): 63-67.
[12] Xu M L, Chen K J, Liu L H, et al. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles[J]. Science China: Technology Science, 2012, 42(4): 378-387 (in Chinese). 徐明亮, 陈克俊, 刘鲁华, 等. 高超声速飞行器准平衡滑翔自适应制导方法[J]. 中国科学: 技术科学, 2012, 42(4): 378-387.
[13] Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58(7): 1-19.
[14] Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J]. Asian Journal of Control, 2014, 16(1): 162-174.
[15] Xu B, Wang S, Gao D, et al. Command filter based robust nonlinear control of hypersonic aircraft with magnitude constraints on states and actuators[J]. Journal of Intelligent & Robotic Systems, 2014, 73(1-4): 233-247.
[16] Xu B, Shi Z, Yang C, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint[J]. Nonlinear Dynamics, 2013, 73(3): 1849-1861.
[17] Schierman J D, Ward D G, Monaco J F, et al. A reconfigurable guidance approach for reusable launch vehicles[M]. Defense Technical Information Center, 2001: 163-175.
[18] Schierman J D, Ward D G, Hull J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 975-988.
[19] Fahroo F, Doman D. A direct method for approach and landing trajectory reshaping with failure effect estimation[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004.
[20] Jiang Z, Ordóñez R. On-line robust trajectory generation on approach and landing for reusable launch vehicles[J]. Automatica, 2009, 45(7): 1668-1678.
[21] Jiang Z, Ordónez R. Trajectory generation on approach and landing for RLVs using motion primitives and neighboring optimal control[C]//Proceedings of the 2007 American Control Conference. Piscataway, NJ: IEEE Press, 2007: 1091-1096.
[22] Tian B, Fan W, Zong Q, et al. Nonlinear robust control for reusable launch vehicles in reentry phase based on time-varying high order sliding mode[J]. Journal of the Franklin Institute, 2013, 350(7): 1787-1807.
[23] Dong C. Research on re-entry guidance method for reusable launch vehicles[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese). 董晨. 可重复使用飞行器再入制导方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |