[1] 方洋旺, 柴栋, 毛东辉, 等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7):1776-1786. FANG Y W, CHAI D, MAO D H, et al. Status and development trend of the guidance and control for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1776-1786(in Chinese). [2] DING Y B, WANG X G, BAI Y L, et al. Global smooth sliding mode controller for flexible air-breathing hypersonic vehicle with actuator faults[J]. Aerospace Science and Technology, 2019, 92:563-578. [3] 王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3):320287. WANG X, GUO J, TANG S J, et al. Robust nonsingular Terminal sliding mode backstepping control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):320287(in Chinese). [4] 李静, 左斌, 段洣毅, 等. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2):220-233. LI J, ZUO B, DUAN M Y, et al. Adaptive terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):220-233(in Chinese). [5] DING Y B, WANG X G, BAI Y L, et al. Adaptive higher order super-twisting control algorithm for a flexible air-breathing hypersonic vehicle[J]. Acta Astronautica, 2018, 152:275-288. [6] 郭建国, 鲁宁波, 周军. 高超声速飞行器有限时间耦合模糊控制[J]. 航空学报, 2020, 41(11):623838. GUO J G, LU N B, ZHOU J. Fuzzy control of finite time attitude coupling in hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623838(in Chinese). [7] 申玉叶. 高超声速飞行器机理建模及特性分析[D]. 天津:天津大学, 2014:12-28. SHEN Y Y. Modeling and characteristic analysis of hypersonic vehicle[D]. Tianjin:Tianjin University, 2014:12-28(in Chinese). [8] SHAUGHNESSY J D, PINCKNEY S Z, MCMINN J D, et al. Hypersonic vehicle simulation model:Winged-cone configuration:NASA-TM-102610[R]. Washington, D.C.:NASA, 1990. [9] CLARK A, WU C, MIRMIRANI M, et al. Development of an airframe-propulsion integrated hypersonic vehicle model:AIAA-2006-0218[R]. Reston:AIAA, 2006. [10] CHAVEZ F R, SCHMIDT D K. Analytical aeropropulsive/aeroelastic hypersonic-vehicle model with dynamic analysis[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1308-1319. [11] BOLENDER M A. An overview on dynamics and controls modelling of hypersonic vehicles[C]//2009 American Control Conference. Piscataway:IEEE Press, 2009:2507-2512. [12] BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2):374-387. [13] BOLENDER M, DOMAN D. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle:AIAA-2005-6255[R]. Reston:AIAA, 2005. [14] MIRMIRANI M, WU C, CLARK A, et al. Modeling for control of a generic airbreathing hypersonic vehicle:AIAA-2005-6256[R]. Reston:AIAA, 2005. [15] MORELLI E, DERRY S, SMITH M. Aerodynamic parameter estimation for the X-43A (Hyper-X) from flight data:AIAA-2005-5921[R]. Reston:AIAA, 2005. [16] ENGELUND W C. Hyper-X aerodynamics:The X-43A airframe-integrated scramjet propulsion flight-test experiments[J]. Journal of Spacecraft and Rockets, 2001, 38(6):801-802. [17] PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869. [18] SIGTHORSSON D, SERRANI A. Development of linear parameter-varying models of hypersonic air-breathing vehicles:AIAA-2009-6282[R]. Reston:AIAA, 2009. [19] OPPENHEIMER M, DOMAN D. A hypersonic vehicle model developed with piston theory:AIAA-2006-6637[R]. Reston:AIAA, 2006. [20] OPPENHEIMER M, SKUJINS T, BOLENDER M, et al. A flexible hypersonic vehicle model developed with piston theory:AIAA-2007-6396[R]. Reston:AIAA, 2007. [21] OPPENHEIMER M, DOMAN D, MCNAMARA J, et al. Viscous effects for a hypersonic vehicle model:AIAA-2008-6382[R]. Reston:AIAA, 2008. [22] BOLENDER M, OPPENHEIMER M, DOMAN D. Effects of unsteady and viscous aerodynamics on the dynamics of a flexible air-breathing hypersonic vehicle:AIAA-2007-6397[R]. Reston:AIAA, 2007. [23] WILLIAMS T, BOLENDER M, DOMAN D, et al. An aerothermal flexible mode analysis of a hypersonic vehicle:AIAA-2006-6647[R]. Reston:AIAA, 2006. [24] UR REHMAN O, PETERSEN I R, FIDAN B. Feedback linearization-based robust nonlinear control design for hypersonic flight vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2013, 227(1):3-11. [25] BU X W, WU X Y, HUANG J Q, et al. Minimal-learning-parameter based simplified adaptive neural back-stepping control of flexible air-breathing hypersonic vehicles without virtual controllers[J]. Neurocomputing, 2016, 175:816-825. [26] BU X W, WU X Y, ZHANG R, et al. A neural approximation-based novel back-stepping control scheme for air-breathing hypersonic vehicles with uncertain parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2016, 230(3):231-243. [27] LEVANT A. Quasi-continuous high-order sliding-mode controllers[J]. IEEE Transactions on Automatic Control, 2005, 50(11):1812-1816. [28] ZHANG Y Y, LI R F, XUE T, et al. An analysis of the stability and chattering reduction of high-order sliding mode tracking control for a hypersonic vehicle[J]. Information Sciences, 2016, 348:25-48. [29] 李亚苹, 王芳, 周超. 全状态受限的高超声速飞行器的预定性能滤波反步控制[J]. 航空学报, 2020, 41(11):623857. LI Y P, WANG F, ZHOU C. Prescribed performance filter backstepping control of hypersonic vehicle with full state constraints[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623857(in Chinese). [30] 骆长鑫, 张东洋, 雷虎民, 等. 输入受限的高超声速飞行器鲁棒反演控制[J]. 航空学报, 2018, 39(4):321801. LUO C X, ZHANG D Y, LEI H M, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):321801(in Chinese). [31] WANG S B, CHEN Q, REN X M, et al. Neural network-based adaptive funnel sliding mode control for servo mechanisms with friction compensation[J]. Neurocomputing, 2020, 377:16-26. [32] DONG C Y, LIU Y, WANG Q. Barrier Lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state constraints[J]. ISA Transactions, 2020, 96:163-176. [33] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099. [34] BU X W. Guaranteeing prescribed performance for air-breathing hypersonic vehicles via an adaptive non-affine tracking controller[J]. Acta Astronautica, 2018, 151:368-379. [35] BU X W, WU X Y, ZHU F J, et al. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors[J]. ISA Transactions, 2015, 59:149-159. [36] ZHAO S Y, LI X B, BU X W, et al. Prescribed performance tracking control for hypersonic flight vehicles with model uncertainties[J]. International Journal of Aerospace Engineering, 2019, 2019:3505614. [37] LIU Y, LIU X P, JING Y W. Adaptive fuzzy finite-time stability of uncertain nonlinear systems based on prescribed performance[J]. Fuzzy Sets and Systems, 2019, 374:23-39. [38] FIORENTINI L, SERRANI A, BOLENDER M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):402-417. [39] DING Y B, WANG X G, BAI Y L, et al. An improved continuous sliding mode controller for flexible air-breathing hypersonic vehicle[J]. International Journal of Robust and Nonlinear Control, 2020, 30(14):5751-5772. [40] 闫杰, 于云峰, 凡永华, 等. 吸气式高超声速飞行器控制技术[M]. 西安:西北工业大学出版社, 2015. YAN J, YU Y F, FAN Y H. Control technology of air-breathing hypersonic vehicle[M]. Xi'an:Northwestern Polytechnical University Press, 2015(in Chinese). [41] 安昊. 吸气式高超声速飞行器控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017:81-82. AN H. Research on control methods of air-breathing hypersonic vehicles[D]. Harbin:Harbin Institute of Technology, 2017:81-82(in Chinese). [42] SERRANI A, BOLENDER M A. Addressing limits of operability of the scramjet engine in adaptive control of a generic hypersonic vehicle[C]//2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2016:7567-7572. [43] GUO Y Y, XU B, HU X X, et al. Two controller designs of hypersonic flight vehicle under actuator dynamics and AOA constraint[J]. Aerospace Science and Technology, 2018, 80:11-19. [44] WU Z H, LU J C, SHI J P, et al. Tracking error constrained robust adaptive neural prescribed performance control for flexible hypersonic flight vehicle[J]. International Journal of Advanced Robotic Systems, 2017, 14(1):1-16. [45] BU X W, WU X Y, HUANG J Q, et al. A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles[J]. Nonlinear Dynamics, 2016, 84(4):2175-2194. [46] ZHU G Q, SUN L F, ZHANG X Y. Neural networks approximator based robust adaptive controller design of hypersonic flight vehicles systems coupled with stochastic disturbance and dynamic uncertainties[J]. Mathematical Problems in Engineering, 2017, 2017:7864375. [47] BU X W. Guaranteeing prescribed output tracking performance for air-breathing hypersonic vehicles via non-affine back-stepping control design[J]. Nonlinear Dynamics, 2018, 91(1):525-538. [48] DING Y B, WANG X G, BAI Y L, et al. Robust fixed-time sliding mode controller for flexible air-breathing hypersonic vehicle[J]. ISA Transactions, 2019, 90:1-18. [49] LIU J X, AN H, GAO Y B, et al. Adaptive control of hypersonic flight vehicles with limited angle-of-attack[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2):883-894. [50] 肖地波, 陆宇平, 刘燕斌, 等. 应用保护映射理论的高超声速飞行器自适应控制律设计[J]. 航空学报, 2015, 36(10):3327-3337. XIAO D B, LU Y P, LIU Y B, et al. Adaptive control law design using guardian maps theory for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3327-3337(in Chinese). [51] DING Y B, WANG X G, BAI Y L, et al. Novel anti-saturation robust controller for flexible air-breathing hypersonic vehicle with actuator constraints[J]. ISA Transactions, 2020, 99:95-109. |