[1] Frost G R, Wennerstrom A J. The design of axial compressor airfoils using arbitrary chamber lines[R]. Wright-Patterson AFB: Aerospace Research Labs, 1973.
[2] Xiao M, Liu B. A study on geometric methods for designing supersonic aerofoil of axial flow compressor[J]. Journal of Aerospace Power, 2000, 15(3): 237-240 (in Chinese). 肖敏, 刘波. 轴流压气机超音叶片叶型几何设计方法的研究[J]. 航空动力学报, 2000, 15(3): 237-240.
[3] Ji G F, Gui X M. A blading design method for axial/centrifugal compressor airfoils using arbitrary camber lines [J]. Journal of Aerospace Power, 2009, 24(1): 150-156 (in Chinese). 冀国锋, 桂幸民. 轴流/离心压气机叶片通用任意中弧造型设计方法[J]. 航空动力学报, 2009, 24(1): 150-156.
[4] Ma W S. Investigation of multistage axial-compressor aerodynamic optimization design[D]. Beijing: Tsinghua University, 2009 (in Chinese). 马文生. 多级轴流压气机气动优化设计研究[D]. 北京: 清华大学, 2009.
[5] Qiu M, Zhou Z G, Liu L L, et al. Supersonic compressor blade profile design method [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 975-985 (in Chinese). 邱名, 周正贵, 刘龙龙, 等. 超声压气机叶型设计方法[J]. 航空学报, 2014, 35(4): 975-985.
[6] Bruna D, Cravero C. Modeling the aerodynamic performance of modern axial flow compressor profiles: A correlative approach using current CFD technology[C]//Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
[7] Bruna D, Cravero C. A CFD suite for design and performance prediction of single and multistage axial flow compressors[C]//Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Intermal Flows Lyon, 2007: 1-7.
[8] Briasco G, Bruna D, Cravero C. A NURBS-based optimization tool for axial compressor cascades at design and off-design conditions[C]//ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin: American Society of Mechanical Engineers, 2008: 2425-2434.
[9] Koini G N, Sarakinos S S, Nikolos I K. A software tool for parametric design of turbomachinery blades[J]. Advances in Engineering Software, 2009, 40(1): 41-51.
[10] Korakianitis T, Rezaienia M A, Hamakhan I A, et al. Two- and three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method for the design of high efficiency turbines, compressors, and isolated airfoils[J]. Journal of Turbomachinery, 2013, 135(4): 041002.
[11] Korakianitis T, Hamakhan I A, Rezaienia M A, et al. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method[J]. Applied Energy, 2012, 89(1): 215-227.
[12] Li L, Li L Z, Ao L B, et al. 14 parameters cascade design method with curvature optimization[J]. Journal of Propulsion Technology, 2013, 34(1): 37-41 (in Chinese). 李磊, 李立州, 敖良波, 等. 基于曲率优化的 14 参数平面叶栅设计方法[J]. 推进技术, 2013, 34(1): 37-41.
[13] Liu W W, Zhang D H, Bai Y, et al. Research on rectification technology of parametric grid distortion in blades modeling process[J]. Machine Tool & Hydraulics, 2004(1): 65-67 (in Chinese). 刘维伟, 张定华, 白瑀, 等. 叶片造型网格扭曲的校正方法研究[J]. 机床与液压, 2004(1): 65-67.
[14] Bai Y, Zhang D H, Ren X J, et al. High quality geometric modeling of blades[J]. Mechanical Science and Technology, 2003, 22(3): 447-449 (in Chinese). 白瑀, 张定华, 任军学, 等. 叶片高质量造型方法研究[J]. 机械科学与技术, 2003, 22(3): 447-449.
[15] Editorial Board of Aircraft Engine Design Manual. Aircraft engine design manual volume 8: Compressor [M]. Beijing: Aviation Industry Press, 2000: 109-114 (in Chinese). 《航空发动机设计手册》总编委会. 航空发动机设计手册第8册: 压气机[M]. 北京: 航空工业出版社, 2000: 109-114.
[16] Pachidis V, Pilidis P, Talhouarn F, et al. A fully integrated approach to component zooming using computational fluid dynamics[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 579-584.
[17] Benini E, Biollo R. Aerodynamics of swept and leaned transonic compressor-rotors[J]. Applied Energy, 2007, 84(10): 1012-1027.
[18] Liu B J, Yuan C X, Yu X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil [J]. Journal of Propulsion Technology, 2013, 34(7): 890-897 (in Chinese). 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术, 2013, 34(7): 890-897.
[19] Wheeler A P S, Sofia A, Miller R J. The effect of leading-edge geometry on wake interactions in compressors[J].Journal of Turbomachinery, 2009, 131(4): 041013.
[20] Hamakhan I A, Korakianitis T. Aerodynamic performance effects of leading-edge geometry in gas-turbine blades[J]. Applied Energy, 2010, 87(5): 1591-1601. |